- C++设计模式:简单工厂、工厂方法、抽象工厂
起个别名
C++算法c++
1.工厂模式的特点在我们现实生活中,买馒头和自己蒸馒头、去饭店点一份大盘鸡和自己养鸡,杀鸡,做大盘鸡,这是全然不同的两种体验:自己做麻烦,而且有失败的风险,需要自己承担后果。买现成的,可以忽略制作细节,方便快捷并且无风险,得到的肯定是美味的食物。对于后者,就相当于是一个加工厂,通过这个工厂我们就可以得到想要的东西,在程序设计中,这种模式就叫做工厂模式,工厂生成出的产品就是某个类的实例,也就是对象。
- Java实现项目1——弹射球游戏
lemon_sjdk
Java实战项目java游戏windows
项目:弹射球游戏项目描述:类似于乒乓球的游戏,游戏可以播放背景音乐,可以更换背景图,当小球碰到下面的挡板后会反弹,当小球碰到方块后会增加分数,当小球掉落会导致游戏失败,按下esc键游戏会暂停,音乐会停止播放,运行时会新建一个music文件夹,文件夹内放入任何音频文件都将作为背景音乐播放项目代码packageorg.example;importcom.google.common.base.Throw
- 持续稳居前列:高排名公众号运营心法
xinxinseo_
大数据微信搜索引擎微信公众平台百度
在微信公众号竞争激烈的环境下,短暂的高排名或许能凭借运气和短期策略实现,但想要持续稳居前列,绝非易事。这需要深入理解平台规则,以长远眼光和系统性思维进行运营,以下是助力公众号保持高排名的核心心法。内容为王:打造持续优质的内容生态优质内容是公众号立足的根本,更是维持高排名的核心。一方面,要保持内容的稳定性和连贯性,围绕公众号定位,建立完善的内容体系。例如,一个科技类公众号,可将内容划分为行业趋势解读
- 网络安全-反弹shell详解(攻击,检测与防御)
程序员鱼
web安全网络安全单片机服务器linuxuni-app
反弹Shell:详解、攻击、检测与防御反弹Shell(ReverseShell)是一种网络安全领域中常见的攻击技术,通常用于远程控制受害者的计算机。本文旨在从网络安全的角度详细介绍反弹Shell的工作原理,实施方法以及如何检测和防御这类攻击。一、Shell的简介与原理1.1什么是Shell?Shell在计算机系统中指的是一个用户界面,用于访问操作系统的服务。在网络安全中,攻击者常利用Shell来控
- 长期抖动(Long-Term Jitter)是啥?
MCU的奇妙之旅
单片机嵌入式硬件mcu硬件工程stm32驱动开发dsp开发
长期抖动(Long-TermJitter)是衡量时钟信号在大量周期后累积的时间偏差的指标。它反映的是时钟边沿位置随时间逐渐“漂移”的程度,类似每天快几秒的钟表,短期内看不出问题,但长期累积会导致显著误差。通俗理解想象两个赛跑者:理想时钟:每一步绝对精准(如每步1秒)。实际时钟:每步可能有微小快慢(如快0.001秒或慢0.001秒)。长期抖动就是跑了1000步后,实际赛跑者比理想位置超前或滞后的总时
- 牛市来临之际,如何用期权抢占反弹先机?
期权汇小韩
金融
牛市来临之际,如何实现用更低的资金成本抢占反弹先机?期权就是一种花小钱办大事的强大工具!尐程序:期权汇1、策略详解若投资者认为短期行情有可能会爆发,相较于追涨个股,买入相关的认购期权是一种更为高效的看涨方式。以银行股为例,考虑到大盘代表指数上证50ETF中银行股权重占比超35%,买入上证50ETF期权能有效捕捉银行板块及指数权重股走强的红利,该策略只需投入小额权利金成本,即可博弈指数权重走强带来的
- Python实现基于POA-CNN-LSTM-Attention鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行多变量回归预测的详细项目实例
nantangyuxi
Python算法神经网络python人工智能深度学习目标检测机器学习
目录Python实她基她POA-CNN-LSTM-Attentikon鹈鹕优化算法(POA)优化卷积长短期记忆神经网络融合注意力机制进行她变量回归预测她详细项目实例...1项目背景介绍...1项目目标她意义...1提升她变量回归预测精度...2优化模型训练效率...2python复制ikmpoxtos#操作系统接口,用她环境管理和文件操作ikmpoxtqaxnikngs#警告管理模块,控制运行时警
- 【PyTorch】PyTorch中torch.nn模块的循环层
PyTorch深度学习总结第九章PyTorch中torch.nn模块的循环层文章目录PyTorch深度学习总结前言一、循环层1.简单循环层(RNN)2.长短期记忆网络(LSTM)3.门控循环单元(GRU)4.双向循环层二、循环层参数1.输入维度相关参数2.隐藏层相关参数3.其他参数三、函数总结前言上文介绍了PyTorch中介绍了池化和torch.nn模块中的池化层函数,本文将进一步介绍torch.
- Python程序员如何制定学习计划?提高编写代码的能力
在工作和生活压力之下,如何提升自己的技能和能力?这是许多人都面临的问题。如果你也有这样的问题,那么首先要明确的是,要想提升自己的能力,必须要有一个清晰的计划和方向。这个计划可以是长期的,也可以是短期的,但必须要有一个大的方向性。接下来,我们来看看如何制定一个有效的计划。如果你不知道如何制定计划,其实很简单。你可以闭上眼睛,想一想自己哪些方面比较薄弱,比如多线程锁、Spring的一些核心技术源码、分
- Pushgateway扩展Prometheus监控
ivwdcwso
运维与云原生prometheusk8s云原生
Pushgateway是Prometheus生态系统中的一个重要组件,它允许我们将短期作业或批处理任务的指标推送到Prometheus中。本文将详细介绍如何安装、配置和使用Pushgateway来扩展Prometheus监控。1.Pushgateway简介Pushgateway主要用于解决以下场景:短期作业无法被Prometheus直接抓取批处理任务需要推送指标防火墙后的应用需要主动推送指标它作为
- Teacher Forcing--------一种用于序列生成任务的训练技巧
AI扶我青云志
自然语言处理人工智能
好的,我们来详细介绍一下TeacherForcing,这是一种在训练序列生成模型(如循环神经网络RNN、长短期记忆网络LSTM、门控循环单元GRU、以及后来的Transformer)时常用的重要技术。核心概念目标:训练一个模型,使其能够根据给定的输入序列(如前一个词、图像编码、时间步数据等)预测下一个输出元素(如下一个词、下一个音符、下一个时间点的值等)。这在机器翻译、文本摘要、对话生成、语音合成
- 2025版最新渗透测试入门教程,从零基础入门到精通,从看这篇开始!
Python_chichi
网络安全安全系统安全web安全
目录渗透测试:不只是找Bug,更是“攻心”?渗透测试“十八般武艺”:你练哪一种?渗透测试“套路”深:六大流派,谁是天下第一?(待续)渗透测试兵器谱:神兵利器大盘点(待续)渗透测试实战演习:看我如何“偷”走你的秘密(待续)从小白到大神:渗透测试修炼手册前言:别再啃那些枯燥的教科书了!想入行网络安全?想玩转渗透测试?别再抱着那些过时的教程死记硬背了!这玩意儿,光靠理论可不行,得结合实战,还得有点“玄学
- 每日一思(2022.5.18)——基金(十二)
伍德禅师
心灵鸡汤生活
每年收益高的基金,后面收益并不一定会持续,因为风格也会切换。中证消费,投资沪深300和中证500中的消费股,食品饮料为主。消费50、消费龙头,投资中证消费、可选消费龙头公司。消费红利,投资消费行业中股息率较高的股票,目前食品比例高,酒比例低一些。短期涨跌无法预测,用3年以上不用的闲钱,控制好每个行业比例20%以内,在低估定投就好了。双创50是投资创业板+科创板的股票,整体优秀行业(医药、信息技术、
- 关税战!股民何去何从?
delasoka
关税投资
一、短期策略:避险与防御规避出口依赖型行业避免投资机械、家电、汽车零部件等对美出口依赖较高的行业,这些行业可能因关税加码而承压。关注内需消费(如食品饮料、医药)和高股息资产(如长江电力、中国神华),这些板块具有较强的防御性。配置避险资产黄金:2025年黄金价格因避险情绪升温而飙升,建议将黄金或黄金ETF配置在投资组合的10%-15%。国债:美国国债收益率波动较大,但中国国债作为无风险资产,可对冲股
- 免费AI配音工具大盘点:2024年不容错过的5大选择
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能ai
免费AI配音工具大盘点:2024年不容错过的5大选择关键词:AI配音工具、文本转语音(TTS)、免费开源、多语言支持、语音合成技术、自然度优化、应用场景摘要:本文深度解析2024年主流免费AI配音工具,从技术原理、功能特性、使用场景到实战案例展开分析。通过对比五大工具(GoogleText-to-Speech、MicrosoftAzureTTS、AmazonPolly、VocaloidNeo、Co
- Spring 大文件传输老中断?手把手教你解决问题!
小W求学之旅
springjava后端断点续传大文件上传
最近在项目里搞大文件传输功能,频繁遇到传输中断的糟心事,反复踩坑调试后终于摸索出一套解决方案!这里简单记录分享一下,附上手写代码和时序图。开发文件上传下载功能时,传输大文件就像开盲盒——要么传着传着突然中断,要么直接弹出文件大小超限的报错。其实这些问题都有迹可循,下面就结合具体场景拆解解决方案。一、传输中断的“元凶”大盘点服务器设置太“小气”:Spring默认限制请求体大小,Tomcat等容器还会
- 【ICLR 2022】时序精选论文08|Pyraformer: 基于金字塔注意力机制与多尺度辨识卷积的时间序列预测模型(代码解读附源码)
OverOnEarth
时间序列预测项目实战人工智能机器学习深度学习python算法
ICLR2022PYRAFORMER:LOW-COMPLEXITYPYRAMIDALAT-TENTIONFORLONG-RANGETIMESERIESMODELINGANDFORECASTINGPyraformer要解决的问题基于时间序列数据面临的挑战:建立一个灵活但简约的模型,能够捕获不同范围的时间依赖性。时间序列通常表现为短期和长期的重复模式,将他们考虑在内是准确预测的关键。即能够获得一个同时
- 长短期记忆(LSTM)网络模型
凌莫凡
lstm人工智能rnn深度学习神经网络
一、概述 长短期记忆(LongShort-TermMemory,LSTM)网络是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时面临的梯度消失/爆炸问题,能够有效捕捉长距离依赖关系。其核心在于引入记忆细胞(CellState)和门控机制(GateMechanism),通过控制信息的流动来实现对长期信息的存储与遗忘。二、模型原理 LSTM由记忆细胞和三个门控单元(遗
- 长短期记忆网络(LSTM):让神经网络拥有 “持久记忆力” 的神奇魔法
在神经网络的奇妙世界里,有一种模型仿佛拥有了“魔法”,能够记住很久以前的信息,克服了传统循环神经网络(RNN)在处理长序列数据时的“健忘症”,它就是长短期记忆网络(LongShort-TermMemoryNetwork),简称LSTM。今天,就让我们一起走进LSTM的世界,揭开它神秘的面纱。一、从RNN的“健忘症”说起循环神经网络(RNN)是一种专门为处理序列数据而设计的神经网络,它通过隐藏层的循
- 百度轮岗:任命新CFO,崔珊珊退居业务二线
大力财经
百度
文|大力财经2025年7月1日,百度组织再次变革,崔珊珊退居二线引发的行业关注。百度创始人李彦宏发布的内部信,宣布的新一轮组织调整里,崔珊珊退居二线这一变动,格外引人瞩目。崔珊珊,这位在百度人力资源及行政管理岗位上坚守了六年多的资深副总裁,在此次轮岗调整中,不再负责相关事务,转而继续担任文化委员会秘书长。崔珊珊退居二线,从短期来看,可能会引发内部团队的一些小波动,但百度通过合理的过渡安排与人员调配
- LSTM(Long Short-Term Memory)模型的深度解析
AI扶我青云志
lstmrnn深度学习
在6.28号我发了一个博客《RNN(循环神经网络)与LSTM(长短期记忆网络)输出的详细对比分析》,但是我并未详细讲解LSTM,LSTM是循环神经网络中的一个模型,然而通过这篇博客给大家深度解析一下LSTM,重点关注其内部结构和参数。LSTM是为了解决标准RNN在处理长序列时出现的梯度消失/爆炸问题而设计的一种特殊循环神经网络结构。它的核心在于引入了门控机制和细胞状态,使得网络能够有选择地记住或忘
- 创客匠人老蒋揭秘:创始人IP打造的价值判断与避坑指南
创客匠人老蒋
商业思维知识变现创始人IP创客匠人
创业路上的诱惑:暴利项目背后的价值陷阱2018年,老蒋面临一场关键抉择:朋友邀请他投资虚拟币发币项目,声称“回报率能达几十倍”。彼时创客匠人年营收已达“小目标”,但他最终拒绝了这场“财富盛宴”。“发币是社会输、客户输、自己输的三输局面”,这种价值判断源于创客匠人“三赢文化”——当项目仅让企业或个人获利,却损害社会与客户时,即便短期暴利也必须拒绝。老蒋的经历揭示了创始人IP打造的首要原则:价值判断是
- Python Day57
别勉.
python机器学习python开发语言
Task:1.序列数据的处理:a.处理非平稳性:n阶差分b.处理季节性:季节性差分c.自回归性无需处理2.模型的选择a.AR§自回归模型:当前值受到过去p个值的影响b.MA(q)移动平均模型:当前值收到短期冲击的影响,且冲击影响随时间衰减c.ARMA(p,q)自回归滑动平均模型:同时存在自回归和冲击影响时间序列分析:ARIMA/SARIMA模型构建流程时间序列分析的核心目标是理解序列的过去行为,并
- 数据结构:递归:汉诺塔问题(Tower of Hanoi)
95号闪电麦坤
数据结构数据结构
目录问题描述第一性原理分析代码实现第一步:明确函数要干什么第二步:写好递归的“结束条件”第三步:写递归步骤递归调用树问题描述有三个柱子(A,B,C),上面有n个大小不等的圆盘,最开始所有圆盘按从大到小顺序堆在柱子A上。目标:将所有圆盘移动到柱子C,移动时要满足:一次只能移动一个盘子;任何时刻小盘子不能压在大盘子上。❓核心问题:如何将n个盘子从A移动到C,同时只用B做辅助,且不违反约束?第一性原理分
- Unity:Colliders(碰撞体)& Rigidbody(刚体)
目录为什么需要Colliders和Rigidbody?2.Colliders(碰撞体)详解3.Rigidbody(刚体)详解4.Collider和Rigidbody的区别5.OnCollisionEnter2D()6.OnTriggerEnter2D()为什么需要Colliders和Rigidbody?在游戏开发中,物体之间的交互是核心需求之一。比如,玩家角色需要撞墙时停下来,球需要掉到地上反弹,
- 本周沪铜想法
落雪财神意
人工智能
核心逻辑:低库存与地缘风险缓和支撑价格,但淡季需求疲软与关税悬疑压制反弹空间,短期维持高位震荡一、成本高企与利润分化当前沪铜市场,成本端与产业链利润呈现出复杂态势。铜精矿加工费(TC)持续处于-43.56美元/吨的负值区间,冶炼厂仍处于“加工即亏损”的艰难处境。海外矿端的一系列扰动是主因:秘鲁安塔米纳铜矿因事故全面停工,智利Sentinel铜矿也因安全问题局部停产,使得短期铜精矿供应愈发紧张;市场
- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- 门控循环单元(GRU):LSTM 的轻量级高效 “记忆专家”
LNL13
grulstm机器学习
在探索完长短期记忆网络(LSTM)的神奇“记忆魔法”后,我们迎来了它的“近亲”——门控循环单元(GatedRecurrentUnit,简称GRU)。GRU就像是神经网络领域里的“精简版记忆大师”,它继承了LSTM处理长序列数据的优势,同时以更简洁的结构和更高的训练效率脱颖而出。今天,就让我们一同走进GRU的世界,看看它是如何在保留核心功能的同时实现“轻装上阵”的。一、GRU的诞生:简化与优化的智慧
- 通达信 智尊多空擒底系统 - 综合趋势交易指标主图
q125500612
通达信指标python前端通达信指标
用法说明:基本信息显示:在K线图右上角显示个股所属行业(HYBLOCK)、地域(DYBLOCK)和概念(GNBLOCK)信息均线系统:包含5/10/20/60/120/250日多条均线用于判断不同周期的趋势方向买卖信号:"↖注意买入":当满足多个条件时提示买入机会"双买"信号:当现价同时上穿买筹和卖筹线时提示"智尊擒底":出现底部信号时提示顶部预警:"见顶":短期顶部信号"大顶":重要顶部信号"危
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc