First Missing Positive
Given an unsorted integer array, find the first missing positive integer.
For example,
Given [1,2,0]
return 3
,
and [3,4,-1,1]
return 2
.
Your algorithm should run in O(n) time and uses constant space.
解法一:O(nlogn) time and O(1) space
无脑解法-->先排序O(nlogn)
思想如下:
1、略去非正的前缀数。
2、记下一个待匹配的正整数为tag。
考虑重复,如果A[i]等于tag,则tag++
如果A[i]大于tag,则返回tag
A[i]不可能小于tag,由排序可以保证。
class Solution { public: int firstMissingPositive(int A[], int n) { if(n == 0) return 1; sort(A,A+n); int i = 0; while(i < n && A[i] <= 0) i ++; if(i == n) return 1; int tag = 1; for(; i < n; i ++) { if(A[i] > tag) //miss the tag return tag; else if(A[i] == tag) //next positive tag ++; else ; } //i==n, miss the tag return tag; } };
解法二:O(n) time and O(n) space
稍作思考就可以知道,n容量的数组,最多覆盖的正整数为连续的1~n
也就是说,丢失的正整数要么出现在1~n中,要么就是n+1
因此可以构造大小为n的数组v,v[i]记录i+1这个数字是否出现在A中。
如果tag全true则返回n+1,否则返回第一个tag为负的下标+1
class Solution { public: int firstMissingPositive(int A[], int n) { if(n == 0) return 1; //tag[i] means whether i+1 exists in A //at most 1~n, then return n+1 vector<bool> tag(n, false); for(int i = 0; i < n; i ++) { if(A[i] > 0 && A[i] <= n) tag[A[i]-1] = true; } for(int i = 0; i < n; i ++) { if(tag[i] == false) return i+1; } return n+1; } };
解法三:O(n) time and O(1) space
解法二中我们构建了新的数组tag来记录每个正整数是否出现在A中,
其实可以省略tag数组,直接在A中记录。这点借鉴了yuyibestman想法。
具体做法为,先将A划分为正整数与非负数。这点类似快排的partition。
A[i]的正负号记录i+1这个数字是否出现在A中。
由于只是符号取负,其值可以通过绝对值函数恢复。这样就代替了解法二中的tag数组了。
class Solution { public: int firstMissingPositive(int A[], int n) { if(n == 0) return 1; //if A[i] is negative, i+1 exists in original A //partition, non-negative only int low = 0; int high = n-1; int end = n-1; while(low <= high) { while(low <= high && A[low] > 0) low ++; //to here, //case low > high: partition finished, high point to the end of the new array if(low > high) { end = high; break; } //case A[low]<=0: low point to the first non-positive element while(high >= low && A[high] <= 0) high --; //to here, //case high < low: partition finished, high point to the end of the new array if(low > high) { end = high; break; } //case A[high]>0: high point to the first positive element swap(A[low],A[high]); } for(int i = 0; i <= end; i ++) { //check whether num is in A, and set A[num-1] to be negative int num = abs(A[i]); if(num <= end+1) { if(A[num-1] > 0) A[num-1] *= -1; } //out of range 1~end+1 } for(int i = 0; i <= end; i ++) { if(A[i] > 0) return i+1; } return end+2; } };