有的函数对象类只用来定义了一个对象,而且这个对象也只使用了一次,编写这样的函数对象类就有点浪费。而且,定义函数对象类的地方和使用函数对象的地方可能相隔较远,看到函数对象,想要查看其 operator() 成员函数到底是做什么的也会比较麻烦。
对于只使用一次的函数对象类,能否直接在使用它的地方定义呢?Lambda 表达式能够解决这个问题。使用 Lambda 表达式可以减少程序中函数对象类的数量,使得程序更加优雅。
Lambda表达式提供了对匿名函数的支持,把函数看作对象。Lambda表达式可以像对象一样使用,比如可以将它们赋给变量和作为参数传递,还可以像函数一样对其求值.
[capture list] (params list) mutable exception-> return type { function body }
1.[var]表示值传递方式捕捉变量var;
2.[=]表示值传递方式捕捉所有父作用域的变量(包括this);
3.[&var]表示引用传递捕捉变量var;
4.[&]表示引用传递方式捕捉所有父作用域的变量(包括this);
5.[this]表示值传递方式捕捉当前的this指针。让lambda表达式拥有和当前类成员函数同样的访问权限上面提到了一个父作用域,也就是包含Lambda函数的语句块,说通俗点就是包含Lambda的“{}”代码块。上面的捕捉列表还可以进行组合,例如:
1.[=,&a,&b]表示以引用传递的方式捕捉变量a和b,以值传递方式捕捉其它所有变量;
2.[&,a,this]表示以值传递的方式捕捉变量a和this,引用传递方式捕捉其它所有变量。 不过值得注意的是,捕捉列表不允许变量重复传递。下面一些例子就是典型的重复,会导致编译时期的错误。例如:
3.[=,a]这里已经以值传递方式捕捉了所有变量,但是重复捕捉a了,会报错的;
4.[&,&this]这里&已经以引用传递方式捕捉了所有变量,再捕捉this也是一种重复。
举例说明:
1、[capture list] (params list) -> return type {function body}
声明了const类型的表达式,这种类型的表达式不能修改捕获列表中的值。
2、[capture list] (params list) {function body}
格式2省略了返回值类型,但编译器可以根据以下规则推断出Lambda表达式的返回类型: (1):如果function body中存在return语句,则该Lambda表达式的返回类型由return语句的返回类型确定; (2):如果function body中没有return语句,则返回值为void类型。
3、[capture list] {function body}
格式3中省略了参数列表,类似普通函数中的无参函数。
class A
{
public:
int i_ = 0;
void func(int x,int y){
auto x1 = [] { return i_; }; //error,没有捕获外部变量
auto x2 = [=] { return i_ + x + y; }; //OK
auto x3 = [&] { return i_ + x + y; }; //OK
auto x4 = [this] { return i_; }; //OK
auto x5 = [this] { return i_ + x + y; }; //error,没有捕获x,y
auto x6 = [this, x, y] { return i_ + x + y; }; //OK
auto x7 = [this] { return i_++; }; //OK
};
int a=0 , b=1;
auto f1 = [] { return a; }; //error,没有捕获外部变量
auto f2 = [&] { return a++ }; //OK
auto f3 = [=] { return a; }; //OK
auto f4 = [=] {return a++; }; //error,a是以复制方式捕获的,无法修改
auto f5 = [a] { return a+b; }; //error,没有捕获变量b
auto f6 = [a, &b] { return a + (b++); }; //OK
auto f7 = [=, &b] { return a + (b++); }; //OK
类似参数传递方式(值传递、引入传递、指针传递),在Lambda表达式中,外部变量的捕获方式也有值捕获、引用捕获、隐式捕获。
值捕获和参数传递中的值传递类似,被捕获的变量的值在Lambda表达式创建时通过值拷贝的方式传入,因此随后对该变量的修改不会影响影响Lambda表达式中的值。
int main()
{
int a = 123;
auto f = [a] { cout << a << endl; };
a = 321;
f(); // 输出:123
//或通过“函数体”后面的‘()’传入参数
auto x = [](int a){cout << a << endl;}(123);
}
使用引用捕获一个外部变量,只需要在捕获列表变量前面加上一个引用说明符&
int main()
{
int a = 123;
auto f = [&a] { cout << a << endl; };
a = 321;
f(); // 输出:321
}
从示例中可以看出,引用捕获的变量使用的实际上就是该引用所绑定的对象。
注意:
一个容易出错的细节是lambda表达式的延迟调用,lambda表达式按值捕获了所有外部变量。在捕获的一瞬间,a的值就已经被复制了。如果希望lambda表达式在调用时能即时访问外部变量,我们应当使用引用方式捕获。
int a = 0;
auto f = [=] { return a; };
a+=1;
cout << f() << endl; //输出0
int a = 0;
auto f = [&a] { return a; };
a+=1;
cout << f() <<endl; //输出1
上面的值捕获和引用捕获都需要我们在捕获列表中显示列出Lambda表达式中使用的外部变量。除此之外,我们还可以让编译器根据函数体中的代码来推断需要捕获哪些变量,这种方式称之为隐式捕获。隐式捕获有两种方式,分别是[=]和[&]。[=]表示以值捕获的方式捕获外部变量,[&]表示以引用捕获的方式捕获外部变量。
隐式值捕获示例:
int main()
{
int a = 123;
auto f = [=] { cout << a << endl; }; // 值捕获
f(); // 输出:123
}
隐式引用捕获示例:
int main()
{
int a = 123;
auto f = [&] { cout << a << endl; }; // 引用捕获
a = 321;
f(); // 输出:321
}
在Lambda表达式中,如果以传值方式捕获外部变量,则函数体中不能修改该外部变量,否则会引发编译错误。这是就需要使用mutable关键字,该关键字用以说明表达式体内的代码可以修改值捕获的变量,示例:
int main()
{
int a = 123;
auto f = [a]()mutable { cout << ++a; }; // 不会报错
cout << a << endl; // 输出:123
f(); // 输出:124
}
需要注意:
被mutable修饰的lambda表达式就算没有参数也要写明参数列表。
原因:lambda表达式可以说是就地定义仿函数闭包的“语法糖”。它的捕获列表捕获住的任何外部变量,最终均会变为闭包类型的成员变量。按照C++标准,lambda表达式的operator()默认是const的,一个const成员函数是无法修改成员变量的值的。而mutable的作用,就在于取消operator()的const。
#include
#include
#include
using namespace std;
bool cmp(int a, int b)
{
return a < b;
}
int main()
{
vector<int> myvec{ 3, 2, 5, 7, 3, 2 };
vector<int> lbvec(myvec);
sort(myvec.begin(), myvec.end(), cmp); // 旧式做法
cout << "predicate function:" << endl;
for (int it : myvec)
cout << it << ' ';
cout << endl;
sort(lbvec.begin(), lbvec.end(), [](int a, int b) -> bool { return a < b; }); // Lambda表达式
cout << "lambda expression:" << endl;
for (int it : lbvec)
cout << it << ' ';
}