- 深度学习赋能中文情感分析:让机器读懂中国人的喜怒哀乐
芯作者
DD:日记深度学习机器学习人工智能
当你在深夜刷到一条"这奶茶真是绝绝子"的朋友圈,AI如何判断这是真心赞美还是阴阳怪气?当电商评论区出现"手机壳颜色很高级,就是物流太佛系",算法怎样量化其中的情感矛盾?在表情包与网络黑话齐飞的数字时代,中文情感分析技术正经历一场由深度学习驱动的认知革命。本文将深度解析这场让机器理解东方语境下复杂情感的科技进化史。一、中文情感分析:世界上最难破译的"情绪密码"1.中文的语义迷宫一词多义:"这操作66
- 最近学习感悟总结
格蕾丝重度依赖
学习
图像识别技术与应用学习到了torchvision、imageFolder以及可视化工具(TensorBoard等)图像分类:将不同的图像,划分到不同的类别标签,实现最小的分类误差。图像分类的三层境界通用的多类别图像分类子类细粒度图像分类实例级图像分类图像分类评估指标--混淆矩阵(精确率;准确率;召回率;F1_Score;P-R曲线)模型基本概念-网络的深度(网络的深度;网络的宽度)图像分类中
- LeetCode第78题_子集
@蓝莓果粒茶
算法leetcode算法职场和发展矩阵数据结构c#c++
LeetCode第78题:子集题目描述给你一个整数数组nums,数组中的元素互不相同。返回该数组所有可能的子集(幂集)。解集不能包含重复的子集。你可以按任意顺序返回解集。难度中等问题链接子集示例示例1:输入:nums=[1,2,3]输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]示例2:输入:nums=[0]输出:[[],[0]]提示1>result=ne
- 数字信号处理之 快速傅里叶变换(FFT)
墨痕_777
信号处理算法
文章目录快速傅里叶变换(FFT)一、直接计算DFT的问题和改善DFT运算效率的基本途径直接计算DFT的问题改善DFT运算效率的基本途径二、按时间抽取(DIT)的FFT算法(库利-图基算法)算法原理按时间抽取的FFT算法与直接计算DFT运算量的比较按时间抽取的FFT算法的特点按时间抽取的FFT算法的若干变体三、按频率抽取(DIF)的FFT算法(桑德-图基算法)算法原理时间抽取算法与频率抽取算法的比较
- 【数学建模】001
反方向的钟儿
数学建模数学建模算法笔记
数学建模方法论层次分析法:确定评级价指标形成评价体系1.评价的目标是什么2.评价标准是什么3.可选方案有哪些以此来选择最优方案“两两”比较发来确定指标重要性可以画图列表,产生几个比较变量:产生一系列正互反矩阵,进而产生判断矩阵,可以得出各个评判指标之间的权重向量一致矩阵和不一致矩阵
- LabVIEW闭环控制系统硬件选型与实时性能
LabVIEW开发
LabVIEW参考程序LabVIEW知识LabVIEW功能
在LabVIEW闭环控制系统的开发中,硬件选型直接影响系统的实时性、精度与稳定性。需综合考虑数据采集速度(采样率、接口带宽)、计算延迟(算法复杂度、处理器性能)、输出响应时间(执行器延迟、控制周期)及操作系统定时精度等核心要素。本文结合典型工业场景(如温度控制、运动控制),分析多类型硬件(USB/PCI/PXI/以太网/串口)的适配性,并提供量化选型依据。一、数据采集模块选型分析1.接口类型与传输
- 学习笔记 -《量子计算与编程入门》- 量子程序
诸葛思颖
量子计算与编程入门机器学习
文章目录1量子计算原理1.1酉变换1.2矩阵的指数函数1.3单量子比特逻辑门1.3.1泡利矩阵1.3.2常见逻辑门以及含义·Hadamard(H)门·Pauli-X门·Pauli-Y门·Pauli-Z门·旋转门(rotationoperators)1.4多量子比特逻辑门·控制非门(Control-NOT)(CNOT门)·控制相位门(Controlledphasegate)(CR/CPhase门)·
- 量子计算基础数学
诸葛思颖
量子计算与编程入门线性代数
文章目录前言一、向量表示和向量运算向量的表示向量的运算二、线性算子和矩阵线性算子几个简单的常用算子三、特征值和特征向量谱分解(SpecialDecomposition)谱分解的作用四、张量积与迹向量的张量积矩阵的张量积张量积操作规则迹(Trace)总结前言本文根据“本源溯知”平台>量子课堂>基本概念>5.本源量子基础数学教学视频进行知识整理,观看视频请点击:本源量子基础数学。一、向量表示和向量运算
- Python精进系列:ord 函数
进一步有进一步的欢喜
python开发语言
目录一、引言二、基本概念2.1Unicode编码简介2.2ord函数定义三、使用示例3.1处理ASCII字符3.2处理非ASCII字符四、与chr函数的关系五、实际应用场景5.1字符排序5.2简单加密算法5.3字符验证六、注意事项6.1输入参数要求6.2跨平台兼容性七、总结一、引言在Python编程里,字符和编码的处理是常见的操作。ord函数作为Python内置函数之一,在字符和Unicode编码
- Python高级开发工程师
巴啦啦小魔仙变身
python开发语言
Python高级开发工程师通常会围绕技术能力、项目经验、问题解决能力等方面展开,以下为你详细介绍面试的常见内容、准备方式及注意事项:常见面试内容技术基础语言特性:深入理解Python的高级特性,如装饰器、元类、描述符等的原理和应用场景。例如,面试官可能会要求你现场编写一个装饰器来实现函数执行时间的统计。数据结构与算法:熟悉常见的数据结构(如列表、字典、集合、堆、栈、队列、链表、树、图等)和算法(如
- 报表控件Stimulsoft报告中的数据矩阵条形码介绍
小董讲MES
报表控件报表工具Stimulsoft
本连载系列教程将介绍StimulsoftReport中创建二维条形码的文章,以及如何在Stimulsoft工具中创建的报告中使用它们。本系列的第一篇文章是关于DataMatrix条形码的,我们将在其中告诉您如何在报表中放置和自定义它。。从2022.1版本开始,我们将Aztec条形码添加到Stimulsoft报告工具和数据分析中。StimulsoftUltimate官方正版下载条形码历史记录随后的自
- 浅谈模拟退火
Alaso_shuang
算法分类学习笔记算法
模拟退火简介模拟退火是一种随机化算法。对于一个当前最优解附近的非最优解,爬山算法直接舍去了这个解。而很多情况下,我们需要去接受这个非最优解从而跳出这个局部最优解,即为模拟退火算法。当一个问题的方案数量极大(甚至是无穷的)而且不是一个单峰函数时,常使用模拟退火求解。实现如果新状态的解更优则修改答案,否则以一定概率接受新状态。模拟退火时有三个参数:初始温度T_0,降温系数d,终止温度T_k。是一个比较
- 【leetcode hot 100 25】K个一组翻转链表
longii11
leetcode链表javascript
解法一:先计算链表的总个数。根据节点总数和当前处理的节点个数进行判断。classSolution{publicListNodereverseKGroup(ListNodehead,intk){ListNodereverse=newListNode();reverse.next=null;ListNodecurr_reverse=reverse;//计算链表总数intnum=0;ListNodecu
- 智能优化算法:海洋捕食者算法
智能算法研学社(Jack旭)
智能优化算法算法机器学习神经网络
智能优化算法:海洋捕食者算法文章目录智能优化算法:海洋捕食者算法1.算法原理2.实验结果3.参考文献4.Matlab代码摘要:海洋捕食者算法(MarinePredatorsAlgorithm,MPA)是AfshinFaramarzi等人于2020年提出的一种新型元启发式优化算法,其灵感来源于海洋适者生存理论,即海洋捕食者通过在Lévy游走或布朗游走之间选择最佳觅食策略。具有寻优能力强等特点。1.算
- 人工智能学习
星月IWJ
人工智能机器学习深度学习神经网络目标检测人工智能
//-----初探-----//人工智能三大核心要素数据/算法/算力人工智能是通过机器来模拟人类认知能力的技术机器学习/神经网络/深度学习(多层隐藏层神经网络)tf1.14python3.5keras2.1.5//-----数学基础&&数字图像-----//向量大小/方向矢量(有大小和方向)标量(只有大小没有方向(长度))单位向量线性变换(矩阵运算)T(v+w)=T(v)+T(w)T(cv)=cT
- Day7 25/2/20 THU
给bug两拳
每日技术博客算法
【一周刷爆LeetCode,算法大神左神(左程云)耗时100天打造算法与数据结构基础到高级全家桶教程,直击BTAJ等一线大厂必问算法面试题真题详解(马士兵)】https://www.bilibili.com/video/BV13g41157hK?p=4&vd_source=04ee94ad3f2168d7d5252c857a2bf358目录4、链表4.3链表的习题4.3.1例14.3.2例2及其进
- 深度学习复习笔记(6)线性回归——新冠预测项目
Kriol
深度学习初学深度学习笔记线性回归
importmatplotlib.pyplotaspltimporttorch#框架importnumpyasnp#矩阵处理importcsv#读excel文件fromtorch.utils.dataimportDataLoader,Dataset#两个与数据处理相关的包,类Datasetimporttorch.nnasnn#类nn.Module需要用,损失函数需要用fromtorchimport
- 搜广推校招面经四十四
Y1nhl
搜广推面经python机器学习人工智能pytorch开发语言
快手主站推荐算法一、因果里面前门准则是什么(Front-DoorCriterion)前门准则是因果推断中的一个重要概念,用于在存在未观测混杂因素的情况下识别因果效应。它由朱迪亚·珀尔(JudeaPearl)提出,是后门准则的补充。1.1.定义前门准则适用于以下情况:存在一个中介变量MMM,它完全介导了处理变量XXX对结果变量YYY的因果效应。处理变量XXX和结果变量YYY之间存在未观测的混杂因素U
- 【力扣hot100】刷题笔记Day13
小涛44
力扣hot100刷题笔记leetcode笔记算法职场和发展数据结构python
前言元宵节快乐~周六在图书馆快乐刷题!继续二叉树543.二叉树的直径-力扣(LeetCode)递归后序classSolution:defdiameterOfBinaryTree(self,root:Optional[TreeNode])->int:self.res=0#记录最长路径#递归求最大深度defdepth(node):ifnotnode:return0l=depth(node.left)#
- 算法笔记入门——问题 I: 锤子剪刀布 (20)
sauTCc
算法笔记算法
题目描述大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示:现给出两人的交锋记录,请统计双方的胜、平、负次数,并且给出双方分别出什么手势的胜算最大。输入输入第1行给出正整数N(intmain(){intn;scanf("%d",&n);getchar();chara,b;intpin=0,vin_jia=0,vin_yi=0;intjia[3]={0},yi[3]={0};fo
- 8.3 GPTQ量化技术:4倍压缩大模型显存,精度零损失!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力语言模型人工智能gpt
GPTQ量化技术:4倍压缩大模型显存,精度零损失!8.2GPTQ:专为GPT设计的模型量化算法一、模型量化技术背景在讨论GPTQ之前,我们需要先理解大模型部署面临的显存困境。以LLaMA-7B模型为例:FP32精度显存占用:28GBFP16精度显存占用:14GBINT8量化后显存占用:7GBINT4量化后显存占用:3.5GB
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 主流加解密算法全景解析:对称、非对称与哈希算法详解
JT-999
网络哈希算法网络算法
主流加解密算法通常分为以下三大类,每类都有其独特的特点和应用场景,下面我们详细介绍这三类算法的原理、优势、缺陷以及典型应用场景:1.对称加密算法原理对称加密算法是指加密和解密都使用同一个密钥。发送方和接收方事先共享一个秘密密钥,利用这个密钥将明文转换为密文,加密后的数据只有用相同的密钥才能解密恢复原文。其基本过程通常包括:明文分块(如果是分组加密算法);对每个数据块进行一系列变换(如置换、替换、异
- 代码随想录算法营Day57 | 孤岛的总面积,沉没孤岛,水流问题,建造最大岛屿
寂枫zero
算法pythonleetcode
孤岛的总面积这道题先将靠近边界线上的岛屿都放置为0,然后再用深度或者广度搜索算法去计算剩余的孤岛总面积count=0position=[[1,0],[0,1],[-1,0],[0,-1]]defdfs(matrix,x,y):globalcountmatrix[x][y]=0count+=1fori,jinposition:next_x=x+inext_y=y+jifnext_x=len(matr
- Unity引擎开发:2D与3D渲染技术_虚拟现实与增强现实技术
chenlz2007
游戏开发2unity3dvrlucene游戏引擎材质ar
虚拟现实与增强现实技术在上一节中,我们探讨了Unity引擎中的光照和阴影处理技术,了解了如何通过不同的光照模型和阴影算法提升游戏的视觉效果。接下来,我们将进入虚拟现实(VR)和增强现实(AR)技术的世界,探讨如何在Unity引擎中实现这些技术,特别是在动作游戏中的应用。虚拟现实(VR)技术虚拟现实技术通过计算机生成的环境来模拟真实的或想象的场景,让用户能够沉浸其中。Unity引擎提供了强大的工具和
- 程序员必备神器:DeepSeek如何帮你高效开发?
后端
作为一名程序员,你是否曾经为了找到一个合适的代码片段而翻遍GitHub?或者为了调试一个复杂的算法而熬夜到凌晨?如果你也有类似的经历,那么今天我要介绍的这款工具——DeepSeek,可能会成为你的开发利器。它不仅能帮你快速找到解决方案,还能提升你的开发效率,甚至让你在代码的世界里游刃有余。DeepSeek是什么?简单来说,它就像是一个智能助手,专门为程序员设计。无论是前端开发、后端架构,还是数据分
- python-leetcode-删掉一个元素以后全为 1 的最长子数组
Joyner2018
leetcode算法职场和发展
1493.删掉一个元素以后全为1的最长子数组-力扣(LeetCode)可以使用滑动窗口的方式来解决这个问题。我们要找到最长的全1子数组,但必须删除一个元素,因此可以将问题转化为寻找最多包含一个0的最长子数组。解题思路使用双指针(滑动窗口),维护窗口内最多包含一个0。当窗口内的0超过1个时,移动左指针left直到窗口内0的数量恢复为1。记录窗口的最大长度,最终返回maxLen-1,因为必须删除一个元
- 28.代码随想录算法训练营第二十八天|122. 买卖股票的最佳时机 II,55. 跳跃游戏,45. 跳跃游戏 II,1005. K 次取反后最大化的数组和
白鹭鸣鸣!
算法java
28.代码随想录算法训练营第二十八天|122.买卖股票的最佳时机II,55.跳跃游戏,45.跳跃游戏II,1005.K次取反后最大化的数组和122.买卖股票的最佳时机II-力扣(LeetCode)给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的
- 基于Pytorch深度学习——Softmax回归
EchoToMe
深度学习pytorch回归python
本文章来源于对李沐动手深度学习代码以及原理的理解,并且由于李沐老师的代码能力很强,以及视频中讲解代码的部分较少,所以这里将代码进行尽量逐行详细解释并且由于pytorch的语法有些小伙伴可能并不熟悉,所以我们会采用逐行解释+小实验的方式来给大家解释代码大家都知道二分类问题我们在机器学习里面使用到的是逻辑回归这个算法,但是针对于多分类问题,我们常用的是Softmax技术,大家不要被这个名字给迷惑了,s
- 在pytorch中的卷积操作
FY_2018
卷积操作:#1.卷积核的输入通道数与输入数据的通道数保持一致,所以卷积核的对应通道与输入数据的对应通道进行卷积操作,以卷积核conv_i为例:#2.卷积核conv_i的对应通道与输入数据对应通道进行对应位置元素的乘法,即用乘法操作“*”,得到一个与卷积核形状一样的矩阵M#3.将第2步中卷积结果矩阵M中的所有元素相加,得到卷积核conv_i在当前通道的卷积结果:标量su_i#4.卷积核conv_i的
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =