- 冒泡排序原理及C++的实现方法
小鹏编程
c++排序算法算法
冒泡排序是一种简单的排序算法,通过重复遍历列表并交换相邻元素来排序。一、算法原理核心思想:每次遍历将当前未排序部分的最大元素"冒泡"到正确位置。操作方式:比较相邻元素顺序错误则交换位置每轮遍历减少一次比较次数二、模拟示例以下用4个数据的数组[4,3,2,1]详细演示冒泡排序过程:初始数组[4,3,2,1]第一轮遍历(确定最大值)目标:将最大的数移动到最右侧比较与交换:比较4和3→交换→[3,4,2
- Spark技术系列(一):初识Apache Spark——大数据处理的统一分析引擎
数据大包哥
#Spark大数据
Spark技术系列(一):初识ApacheSpark——大数据处理的统一分析引擎1.背景与核心价值1.1大数据时代的技术演进MapReduce的局限性:磁盘迭代计算、中间结果落盘导致的性能瓶颈Spark诞生背景:UCBerkeleyAMPLab实验室为解决复杂迭代计算需求研发(2010年开源)技术定位:基于内存的通用分布式计算框架(支持批处理、流计算、机器学习、图计算等)1.2Spark内置模块S
- 十大经典排序算法上
2401_85327573
排序算法算法数据结构
0、算法概述0.1算法分类十种常见排序算法可以分为两大类:1、冒泡排序(BubbleSort)冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。1.1算法描述内执行时所需存储空间的度量,它也是数据
- Exception:data did not match any variant of untagged enum PyPreTokenizerTypeWrapper at line 69 解决方案
爱编程的喵喵
Python基础课程pythontokenizerPyPreTokenizer解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Exception:datadidn
- 一学就会:A*算法详细介绍(Python)
不去幼儿园
人工智能(AI)#启发式算法算法python人工智能机器学习开发语言
本篇文章是博主人工智能学习以及算法研究时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在启发式算法专栏:【人工智能】-【启发式算法】(6)---《一学就会:A*算法详细介绍(Python)》一学就会:A*算法详细介绍(Python)目录A*算法介绍A*算法的核心概念A*算法的特点A*算法示例:迷宫
- Golang的Aes加解密工具类
张声录1
golang开发语言后端
packagemainimport("bytes""crypto/aes""crypto/sha1""encoding/binary""encoding/hex""fmt")//SHA1PRNG模拟Java的SHA1PRNG算法typeSHA1PRNGstruct{state[sha1.Size]bytecounteruint32indexint}//NewSHA1PRNG使用种子初始化SHA1P
- 电竞赛事数据分析:LNG vs BLG的胜利背后
烧瓶里的西瓜皮
python自动驾驶人工智能数据可视化机器学习
电竞赛事数据分析:LNGvsBLG的胜利背后摘要在S14瑞士轮次日,LNG以1:0战胜BLG,取得了开赛二连胜。本文将通过Python进行数据处理与分析,结合机器学习算法预测比赛结果,并使用数据可视化工具展示关键指标。通过对这场比赛的数据深入挖掘,揭示LNG获胜的关键因素。引言电子竞技(Esports)已经成为全球范围内的一项重要娱乐活动,而《英雄联盟》(LeagueofLegends,LoL)作
- 神经网络中的Adam
化作星辰
神经网络人工智能深度学习
Adam(AdaptiveMomentEstimation)是一种广泛使用的优化算法,结合了RMSprop和动量(Momentum)的优点。它通过计算梯度的一阶矩估计(mean)和二阶矩估计(uncenteredvariance),为每个参数提供自适应学习率。Adam由DiederikP.Kingma和JimmyBa在2014年的论文《Adam:AMethodforStochasticOptimi
- 神经网络中的Nesterov Momentum
化作星辰
神经网络人工智能深度学习
NesterovAcceleratedGradient(NAG),也称为NesterovMomentum,是一种改进版的动量优化算法,旨在加速梯度下降过程中的收敛速度,并提高对最优解的逼近效率。它由YuriiNesterov在1983年提出,是对传统动量方法的一种增强。###传统动量法回顾在传统的动量方法中,更新规则不仅考虑当前的梯度,还包含了之前所有梯度的方向和大小的累积(即“动量”),以帮助克
- 编程基础-算法研究-算法题
周陽讀書
算法基础个人经验可供分享算法
没想到工作几年后还要考算法题目遂研究记录目录0.简介1.丑数1.1题目1.2要点1.2.1丑数如何判别1.2.2后续丑数如何找到1.2.3结尾th,nd,st规律1.2.4完整可参考代码2大斐波那契数2.1题目2.2要点2.2.1范围超界2.3完整参考代码2.4延伸:C语言计算100的阶乘2.5其他细节点3迷宫问题3.1迷宫问题13.2迷宫问题20.简介一些技巧:~scanf#include{in
- 222222222222222
智能与优化
开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas是基于Nu
- 网站内容更新后百度排名下降怎么办?有效策略有哪些?
qiufeng_xinqing
SEO
转自网站内容更新后百度排名下降怎么办?有效策略有哪些?网站内容更新是促进网站优化的关键环节,但是频繁修改网站内容会对网站的搜索引擎排名造成很大的影响。为了保持网站排名,我们需要采取一些措施来最小化对百度排名的影响。网站内容更新后百度排名下降怎么办?有效策略有哪些?一:了解百度算法对网站内容修改的影响百度的搜索引擎算法将网站的历史数据纳入排名考量因素之一。频繁的修改网站内容会降低网站历史数据的稳定性
- 神经网络中的Adagrad
化作星辰
神经网络人工智能深度学习
Adagrad(AdaptiveGradient)是一种自适应学习率的优化算法,专门设计用于在训练过程中自动调整每个参数的学习率。这种方法对于处理稀疏数据特别有效,并且非常适合那些需要频繁更新但很少使用的参数的学习任务。###Adagrad的核心思想Adagrad通过累积过去所有梯度平方的和来调整每个权重的学习率。具体来说,它为网络中的每个参数维护一个历史梯度平方和,然后用这个累积值来缩放当前的学
- python画出roc曲线 auc计算逻辑_Python画ROC曲线和AUC值计算
路过炊烟
python画出roc曲线auc计算逻辑
前言ROC(ReceiverOperatingCharacteristic)曲线和AUC常被用来评价一个二值分类器(binaryclassifier)的优劣。这篇文章将先简单的介绍ROC和AUC,而后用实例演示如何python作出ROC曲线图以及计算AUC。AUC介绍AUC(AreaUnderCurve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,
- 基于STM32的无人机自主导航与避障系统
STM32发烧友
stm32无人机嵌入式硬件
目录引言环境准备2.1硬件准备2.2软件准备无人机自主导航与避障系统基础3.1控制系统架构3.2功能描述代码实现:实现无人机自主导航与避障系统4.1数据采集模块4.2数据处理与控制算法4.3通信与远程监控实现4.4用户界面与数据可视化应用场景:无人机智能化与任务执行问题解决方案与优化收尾与总结1.引言无人机自主导航与避障技术是无人机系统实现智能化和高效任务执行的核心功能。基于STM32微控制器,该
- 密钥派生算法介绍 及 PBKDF2(过时)<Bcrypt(开始淘汰)<Scrypt< Argon2(含Argon2d、Argon2i、Argon2id)简介
carcarrot
相关知识算法与结构密钥派生算法密钥派生函数BcryptScryptArgon2
密钥派生算法介绍https://blog.csdn.net/xcxhzjl/article/details/127297263一、定义密钥派生函数(KeyDerivationFunction)就是从一个密码产生出一个或多个密钥,具体就是从一个masterkey,password或者passphrase派生出一个或多个密钥,派生的过程使用PRF(PseudoRandomFunction)。是一种实现
- 【python 机器学习】sklearn ROC曲线与AUC指标
人才程序员
杂谈机器学习pythonsklearn人工智能深度学习神经网络目标检测
文章目录sklearnROC曲线与AUC指标1.什么是ROC曲线与AUC?通俗介绍:学术解释:2.在`sklearn`中绘制ROC曲线与计算AUC2.1导入库和数据2.2加载数据集2.3训练模型2.4预测概率2.5计算FPR、TPR和AUC2.6绘制ROC曲线3.解析ROC曲线和AUC值4.总结sklearnROC曲线与AUC指标在机器学习中,评估分类模型的性能不仅仅依赖于准确率,还需要使用一些更
- 月之暗面改进并开源了 Muon 优化算法,对行业有哪些影响?
互联网之路.
知识点开源算法
互联网各领域资料分享专区(不定期更新):Sheet正文月之暗面团队改进并开源的Muon优化算法在深度学习和大模型训练领域引发了广泛关注,其核心创新在于显著降低算力需求(相比AdamW减少48%的FLOPs)并提升训练效率,同时通过开源推动技术生态的共建。1.显著降低大模型训练成本,推动技术普惠算力需求锐减:Muon通过引入权重衰减和一致的RMS更新,解决了原始Muon在大规模训练中的稳定性问题,使
- leetcode 0008 - 字符串转换整数 (atoi) medium
SuperCandyXu
Leetcodeleetcode算法
1题目:字符串转换整数(atoi)请你来实现一个myAtoi(strings)函数,使其能将字符串转换成一个32位有符号整数。函数myAtoi(strings)的算法如下:空格:读入字符串并丢弃无用的前导空格("")符号:检查下一个字符(假设还未到字符末尾)为‘-’还是‘+’。如果两者都不存在,则假定结果为正。转换:通过跳过前置零来读取该整数,直到遇到非数字字符或到达字符串的结尾。如果没有读取数字
- tarjan算法——求无向图的割点和桥
风灵无畏YY
强连通分量tarjan割点和桥
一.基本概念1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥。2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点。二:tarjan算法在求桥和割点中的应用1.割点:1)当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子
- 【Python】7天-python实现缓存-day01
qq_40375355
Python-7天小项目pythonpython缓存开发语言
使用Python实现类似redis的缓存,原文是使用go实现的,本文使用python实现,用来比较两者的区别,方便从python转go的开发者比较二者的不同。PS:原文链接是:https://geektutu.com/post/geecache-day1.htmlPS:预计在完成前还会对本文多次修改仅作参考PS:测试代码也会在后续补充一、LRU和LRU-K原文使用的是LRU算法,这里改成LRU-K
- 100种算法【Python版】第38篇—— Tarjan算法
AnFany
算法python开发语言Tarjan算法群体分析
本文目录1算法说明2算法示例:社交群体分析3算法示例:交通路网中的强连通分量识别4算法应用1算法说明Tarjan算法由计算机科学家RobertTarjan于1972年提出,目的是在有向图中有效地找到强连通分量(StronglyConnectedComponents,SCC)。强连通分量是指图中一个最大子图,其中任意两个节点之间都有路径相互可达。Tarjan算法是基于深度优先搜索(DFS)的一种高效
- Python实现强连通分量算法——Tarjan算法
NoABug
算法深度优先python
Python实现强连通分量算法——Tarjan算法Tarjan算法是一种基于深度优先搜索(DFS)的强连通分量(SCC)查找算法,由RobertTarjan在1972年提出。它采用了栈(Stack)数据结构来记录已发现但未处理完的节点,并通过对每个节点进行DFS遍历来寻找强连通分量。以下是Python实现的Tarjan算法的完整源码:#-*-coding:utf-8-*-deftarjan(gra
- python爬虫项目(一百九十八):电商平台用户行为数据分析与推荐系统、爬取电商平台用户行为数据
人工智能_SYBH
爬虫试读2025年爬虫百篇实战宝典:从入门到精通python爬虫数据分析开发语言信息可视化okhttp
在现代电商平台中,用户的行为数据对于优化用户体验、提升销量以及个性化推荐至关重要。通过抓取和分析用户的浏览、点击、购买等行为数据,电商平台能够更好地了解用户的偏好,从而推荐相关产品,增加用户的黏性和购买意愿。本篇博客将详细介绍如何通过爬虫技术抓取电商平台的用户行为数据,并结合数据分析和推荐算法,构建一个简单的推荐系统。目录一、电商平台用户行为数据二、爬虫技术实现2.1网站分析2.2使用Seleni
- Tarjan求无向图割边
Visors
算法图论
文章目录Tarjan算法无向连通图的搜索树时间戳dfn追溯值low无向图的割边及判定对重边的处理参考实现Tarjan算法不得不说RobertTarjan真的是大师,发个网站大家感受一下——论文索引。这里要说的Tarjan算法用于解决无向图的连通性,学习之前,先了解两个概念。无向连通图的搜索树当我们遍历一个无向连通图时,显然一个点只会被访问一次,而访问一个点的方法是从一个当前已访问的点uuu,沿着它
- 【Day47 LeetCode】图论问题 Ⅴ
银河梦想家
leetcode图论算法
一、图论问题Ⅴ今天学习最小生成树算法–prim算法和kruskal算法。最小生成树是所有节点的最小连通子图,有n个节点则必有n-1条边将所有节点连接起来。如何选取n-1条边使得图中所有节点连接到一起,并且边的权值和最小,这就是最小生成树问题。1、prim算法–寻宝问题prim算法的思想是每次寻找距离最小生成树最近的节点,并加入到最小生成树中。prim主要有三步:1、选距离生成树最近节点;2、最近节
- OpenCV开源机器视觉软件
视觉人机器视觉
杂说opencv开源人工智能
OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,广泛应用于实时图像处理、视频分析、物体检测、人脸识别等领域。它由英特尔实验室于1999年发起,现已成为计算机视觉领域最流行的工具之一,支持多种编程语言(如C++、Python、Java)和操作系统(Windows、Linux、macOS、Android、iOS)。核心功能图像处理基
- 《AI 大模型 ChatGPT 的传奇》
武昌库里写JAVA
面试题汇总与解析课程设计springbootvue.js算法数据结构
《AI大模型ChatGPT的传奇》——段方某世界100强企业大数据/AI总设计师教授北京大学博士后助理:1三6三二四61四五41AI大模型的概念和特点1.1什么是”大模型、多模态“?1.2大模型带来了什么?1.3大模型为什么能产生质变?1.4算法层面的跃升1.4.1RNN到transformor1.4.2扩散模型diffusion1.4.3跨模态的CLIP框架1.5AIGC的耀眼成果1.5.1AI
- 向量数据库实战介绍
Zhank10
数据库
本文将介绍三种常用的向量数据库:faiss,Milvus和Qdrant,并给出一个具体的使用例子。向量数据库(VectorDatabase)是一种专门用于存储、管理、查询、检索向量的数据库,主要应用于人工智能、机器学习、数据挖掘等领域。在向量数据库中,数据以向量的形式进行存储和处理,需要将原始的非向量型数据转化为向量表示(比如文本使用Embedding技术获得其表征向量)。这种数据库能够高效地进行
- 【二分查找 图论】P10050 [CCO2022] Alternating Heights|普及
闻缺陷则喜何志丹
#洛谷普及图论c++洛谷二分查找滑动窗口身高学生
本文涉及的基础知识点本博文代码打包下载C++二分查找C++图论C++算法:滑动窗口及双指针总结[CCO2022]AlternatingHeights题目描述Troy计划给CCO的学生拍一张合影,他向你寻求帮助。有KKK个学生,编号从111到KKK。Troy忘记了学生的身高,但他记得没有两个学生的身高相同。Troy有一个序列A1,A2,…,ANA_{1},A_{2},\ldots,A_{N}A1,A
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite