- 1. 基于大模型能力,如何提炼出优质prompt(入门版)
姚瑞南
prompt系列课程人工智能AIGCchatgpt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)本文简介:入门版:基于大模型能力,如何提炼出优质prompt提示词的重要性和价值大模型基础能力简介prompt的基本定义如何定义优质的promptprompt的万能公式与套路prom
- 论文阅读--Qwen2&2.5技术报告
__如果
论文阅读qwen
Qwen21引言所有模型都是在超过7trilliontoken(7万亿)的高质量、大规模数据集上预训练的2Tokenizer&Model2.1Tokenizer沿用Qwen(Bai等人,2023a)的做法,我们采用了基于字节级字节对编码的相同Tokenizer所有大小的模型都采用一个共有词汇表,包含151,643个常规词元和3个控制词元2.2模型架构基于Transformer架构的大型语言模型,具
- 领导力与职业发展:帮助团队成员成长
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《领导力与职业发展:帮助团队成员成长》关键词:领导力、职业发展、团队成长、管理技能、领导艺术摘要:本文深入探讨了领导力与职业发展的关系,探讨了领导力在团队中的核心作用,以及如何通过有效的领导力帮助团队成员实现个人与职业的成长。文章从领导力的基础理论出发,逐步分析了领导力的定义、重要性、技能与个人发展,详细阐述了职业规划、职场技能提升、职业发展策略等方面的内容。同时,文章结合实践案例,提供了具体的领
- Node.js 模块化编程实践:管理大型项目和依赖
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《Node.js模块化编程实践:管理大型项目和依赖》关键词:Node.js、模块化编程、大型项目、依赖管理、包管理工具、性能优化、测试与调试、实战项目摘要:本文将深入探讨Node.js模块化编程实践,从基础知识和模块化概述开始,逐步讲解如何管理大型项目和依赖。我们将详细介绍Node.js的模块加载机制、包管理工具、大型项目构建与优化、测试与调试等关键点。通过一系列实战项目案例,读者将掌握Node.
- MPP数据库:大数据处理的“高手”
狮歌~资深攻城狮
数据仓库数据分析数据库
MPP数据库:大数据处理的“高手”最近听到很多朋友讨论大数据处理的技术,其中就有一个词常常被提起,那就是MPP(MassivelyParallelProcessing,大规模并行处理)。那么,什么是MPP数据库呢?简单来说,它是一种专门用于大数据分析和处理的数据库技术,通过将数据和计算任务分配到多个节点上,达到高效、快速地处理海量数据的效果。1.MPP数据库是如何工作的?MPP数据库的工作方式和我
- 通用人工智能的多层次提示词架构
AI天才研究院
计算机软件编程原理与应用实践大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
通用人工智能的多层次提示词架构关键词通用人工智能(AGI),多层提示词架构,人工智能设计原则,算法原理,系统架构设计,应用案例摘要本文将深入探讨通用人工智能(AGI)的多层次提示词架构,阐述其背景、核心概念、设计原则和实现方法。我们将逐步分析这一架构在不同领域的应用,并展望其未来的发展方向。通过本文,读者将了解如何构建能够模拟人类智能的多层次提示词系统,并思考其在实际应用中的潜力与挑战。目录第一部
- 程序员创业公司的技术栈选择与性能优化
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据AI人工智能大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《程序员创业公司的技术栈选择与性能优化》概述本文旨在探讨程序员创业公司在选择技术栈和进行性能优化方面的策略与实践。随着技术的不断进步和市场的快速变化,技术栈的选择和优化成为创业公司成功的关键因素。正确的技术栈选择不仅能够提升系统的性能和可扩展性,还能降低开发成本和维护难度。关键词技术栈选择性能优化创业公司云计算数据库微服务人工智能区块链边缘计算摘要本文首先分析了技术栈选择的重要性以及创业公司在技术
- 高可用高负载高并发的互联网应用的架构设计
AI架构设计之禅
AI大语言模型和知识图谱融合Python入门实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
高可用高负载高并发的互联网应用的架构设计关键词:高可用性、高负载、高并发、分布式系统、负载均衡、缓存、数据库优化、微服务架构1.背景介绍在当今数字化时代,互联网应用已经成为我们日常生活中不可或缺的一部分。随着用户数量的激增和业务需求的不断扩大,构建高可用、高负载、高并发的互联网应用架构已经成为现代软件工程中的一个重要挑战。本文将深入探讨如何设计和实现一个能够满足这些要求的互联网应用架构,从而为读者
- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- 数字化转型对企业带来的价值是什么?
“数字化”“智能化”“降本增效”等词,已成为传统企业最热的几个话题。在此模式下带来的是企业内部的各种“卷”,企业各部门一方面要积极降本、开源节流,而另一方面又在暗暗争夺本就不足的企业资源,体现其能力;一、数字化转型对企业带来的价值:1、优化运营效率:通过自动化和智能化技术,企业可以简化流程、减少人工错误,从而提高运营效率。数字化转型有助于企业实时监控生产、库存、销售等各个环节,及时发现问题并进行调
- 【大模型应用开发 动手做AI Agent】AutoGen
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【大模型应用开发动手做AIAgent】AutoGen关键词:自动生成(AutoGeneration)AI代理(Agent)大型语言模型AutoGen框架自定义任务生成1.背景介绍1.1问题的由来在当今的AI领域,大型语言模型因其强大的文本生成能力而受到广泛关注。这些模型通常在大规模文本数据集上进行预训练,以便能够生成与上下文相关的高质量文本。然而,对于特定领域或特定任务的需求,往往需要对这些通用模
- 深度学习从入门到精通:全面指南
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《深度学习从入门到精通:全面指南》文章目录《深度学习从入门到精通:全面指南》文章关键词文章摘要引言第一部分:深度学习基础入门第1章:深度学习概述1.1深度学习的基本概念1.2深度学习的发展历程1.3深度学习的基本原理神经网络前向传播反向传播第2章:深度学习框架入门2.1TensorFlow入门TensorFlow环境搭建TensorFlow基本数据结构2.2PyTorch入门PyTorch环境搭建
- 磁盘 RAID 模式科普:为数据安全和性能护航
weixin_42587823
linux云计算服务器数据库运维
磁盘RAID模式科普:为数据安全和性能护航在企业和个人存储中,我们经常听到“RAID”这个词。它是“RedundantArrayofIndependentDisks”(独立磁盘冗余阵列)的缩写。RAID提供了一种通过多块硬盘组合实现数据冗余或性能提升的方法。今天我们用通俗易懂的方式,带你深入了解RAID各种模式的特点、适用场景和实现方法。一、RAID是什么?为什么需要它?RAID是一种将多块硬盘组
- 【AI大模型】Prompt 提示词工程使用详解
小码农叔叔
AI大模型实战与应用Prompt提示词工程使用Prompt提示词工程Prompt提示词Prompt使用详解Promptprompt使用总结Prompt使用总结
目录一、前言二、Prompt提示词工程介绍2.1Prompt提示词工程是什么2.1.1Prompt构成要素2.2Prompt提示词工程有什么作用2.2.1Prompt提示词工程使用场景2.3为什么要学习Prompt提示词工程三、Prompt提示词工程元素构成与操作实践3.1前置准备3.2Prompt基本结构介绍与使用3.2.1明确指令3.2.2提供必要的原始内容3.2.3提供背景参考四、Promp
- 指针之旅:从基础到进阶的全面讲解
就爱学编程
新星杯c语言开发语言
大家好,这里是小编的博客频道小编的博客:就爱学编程很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!!本文目录引言正文(1)内置数据类型指针(2)自定义类型指针1.数组指针与指针数组2.结构体指针3.联合体指针(1)联合体指针的定义(2)联合体指针的使用(3)联合体指针的注意事项(3)函数指针1.函数指针的定义2.函数指针的赋值3.函数指针的使用4.函数指针作
- 2.6 聚焦:Word Embedding
少林码僧
AI大模型应用实战专栏wordembedding
聚焦:WordEmbeddingWordEmbedding(词嵌入)是一种将词语转化为低维向量表示的技术,使得词语在数学空间中具有语义上的相似性。它是自然语言处理(NLP)中不可或缺的一部分,为文本数据提供了强大的表示能力。与传统的基于词频的词袋模型(Bag-of-Words)相比,WordEmbedding能够捕捉到词语之间更深层的语义和上下文信息。1.词嵌入的定义与作用WordEmbeddin
- DETRs with Collaborative Hybrid Assignments Training论文阅读与代码
分享总结快乐
论文阅读
关键词:协作混合分配训练【目标检测】Co-DETR:ATSS+FasterRCNN+DETR协作的先进检测器(ICCV2023)-CSDN博客摘要:在这篇论文中,作者观察到在DETR中将过少的Query分配为正样本,采用一对一的集合匹配,会导致对编码器输出的监督稀疏,严重损害编码器的区分特征学习,反之亦然,也会影响解码器中的注意力学习。为了缓解这个问题,作者提出了一种新颖的协同混合分配训练方案,名
- 用Python爬虫获取微博热搜词:数据抓取、分析与可视化全流程
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言selenium
引言微博作为中国最受欢迎的社交平台之一,每时每刻都在更新着海量的内容。其中,微博热搜词反映了用户关注的热点话题、社会事件及潮流趋势。对于数据分析、情感分析以及趋势预测等领域,获取微博热搜数据是一个非常有价值的任务。在本篇博客中,我们将详细介绍如何使用Python爬虫技术获取微博的热搜词,并进行数据分析和可视化。通过全流程的讲解,帮助你了解如何通过爬虫技术抓取并分析微博热搜词数据。一、爬虫技术概述与
- Spring AI提示词模板PromptTemplate的使用
大龄码农有梦想
AI人工智能spring人工智能PromptTemplatePrompt提示词提示词模板SpringAI
本文重点介绍Prompt提示词和PromptTemplate提示词模板,在SpringAI框架里,Prompt类的设计旨在简化与LLM之间的交互过程,同时提供了足够的灵活性来满足不同类型的对话需求。通过合理利用Prompt及其内部的消息结构,开发者可以有效地引导LLM生成高质量的回答,提升用户体验。1、SpringBoot集成SpringAI框架如何基于Springboot集成SpringAI框架
- Wi-Fi 6网络设计与优化
A0_張張
网络算法
摘要Wi-Fi6网络作为新一代无线局域网标准,具有更高的网络性能和更广的应用场景,但同时也面临着网络设计与优化的难题。本文主要介绍了Wi-Fi6网络设计的关键技术和问题,包括无线信道分配、多用户接入、网络拓扑结构等,同时还阐述了Wi-Fi6网络的优化方法。本文旨在为网络设计师和相关研究人员提供有益的参考。关键词:Wi-Fi6,网络设计,无线信道分配,多用户接入,网络优化引言Wi-Fi6是目前最新的
- AI编程,不会使用提示词,那怎么能行!! 小南独家提示词书写技巧, 让你效率提高2倍!!! - 提示词第一课!!!!
小南AI学院
AIJAVA前端AI编程
0.前言这是提示词第一课程,未来还有cursor、Copilot、通义千问、MarsCode的实战。关注、收藏不迷路。麻烦点个赞吧。小南持续为大家1.如何写提示词编写有效提示词是高效使用AI编程软件的关键。下面介绍一些方法和技巧,帮助你更精准地引导模型生成所需内容。1.1明确角色将AI编程软件设定为特定领域的专家角色,有助于生成更专业、更贴合实际需求的内容。示例:“你是一位经验丰富的Java后端开
- 射频知识——基本概念和术语
lidianlai256
射频
一、基础知识1、功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。换算公式:电平(dBm)=10lgw5W→10lg5000=37dBm10W→10lg10000=40dBm20W→10lg20000=43dBm从上不难看出,功率每增加一倍,电平值增加3dBm2、增益(dB):即放大倍数,单位可表示为分贝(dB)。即:dB=1
- 常见哈希表相关题目
我要学编程(ಥ_ಥ)
优选算法专题算法数据结构哈希表
找往期文章包括但不限于本期文章中不懂的知识点:个人主页:我要学编程(ಥ_ಥ)-CSDN博客所属专栏:优选算法专题目录1.两数之和面试题01.02.判定是否互为字符重排217.存在重复元素219.存在重复元素II49.字母异位词分组哈希表我们在数据结构阶段也是重点学习了,并且也已经刷了一部分的题目了。下面还练习一部分题目即可。1.两数之和题目:给定一个整数数组nums和一个整数目标值target,请
- 数据飞轮:互联网企业降本增效的数智化新范式
大数据
2024年末临近,回顾过去两年多的复杂市场环境,互联网全行业普遍遭遇了增长放缓的挑战。在这样的背景下,“降本增效”成为了整个行业的关键词。为了应对这一挑战,众多企业开始探索新的发展模式,其中,“数据飞轮”的数智化模式凭借其特性,正在为行业提供一条有效的降本增效路径。数据飞轮理念的核心在于通过数据消费,充分发挥企业数据资产的价值。该模式倡导以数据消费为核心驱动力,推动数据流与业务流的深度融合,从而激
- C语言的语法糖
AI向前看
包罗万象golang开发语言后端
C语言的语法糖引言在程序开发的过程中,语言的设计和编写风格往往会直接影响开发效率和代码可读性。C语言作为一种广泛应用于系统编程和嵌入式开发的编程语言,其设计虽然追求简洁与高效,但在某些方面同样存在可以提高编程体验的“语法糖”。本文将深入探讨C语言中的语法糖概念及其应用对程序员的帮助。一、什么是语法糖“语法糖”(SyntacticSugar)一词最早由计算机科学家希伯特·马克·古尔德(PeterJ.
- 使用Claude构建文本生成应用
asd5646asd
easyui前端javascriptpython
在现代AI技术领域,Claude以其在广泛的文本任务中的优越表现受到广泛关注。无论是处理代码、撰写散文还是其他自然语言任务,Claude都能提供精准的文本输出。为了更好地实现这些功能,我们需要掌握Claude的API使用,以及如何编写有效的提示词。本文将深入探讨Claude的文本生成能力,通过可运行的代码示例,帮助您快速上手实际开发。技术背景介绍Claude是由Anthropic开发的一种智能文本
- 文献综述相关ChatGPT提示词分享
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能数据分析AIGC信息可视化数据挖掘prompt
文献综述ChatGPT可以帮助提高文献综述的有效性和全面性。ChatGPT可以高效搜索和审查与宝子们课题研究相关的文献资料来源。一些给力的插件工具还可以帮助您总结复杂的研究论文并提取信息以更快更好地消化信息。合理的运用ChatGPT和GPTs可以提高文献综述的清晰度和质量,使其更加全面和有洞察力。文献综述提示词*131.在[人工智能相关]领域中,主要发现有哪些?2.在[人工智能相关]领域中,引用次
- 企业落地大模型的路径选择:微调、RAG、提示词工程
AGI-杠哥
深度学习自然语言处理人工智能学习知识图谱
一、大模型的特点1)不确定性与传统应用不同,模型的输出是不确定的,即使多次问它一样的问题,给出的结果也可能不一样。这种特性对于日常应用业务OK,但是如果要在企业内用来处理具体业务问题,就必须提高这个稳定性,否则影响生产经营,例如产线操作人员通过模型获取操作步骤或者参数,如果步骤或者数据不对可能会导致产品出现质量问题等等。2)静态性模型一旦训练好,就无法再补充数据,因此模型不会了解你自己组织内部的年
- 深度解析智能问答系统:如何打造精准、高效的AI对话架构?
和老莫一起学AI
人工智能架构自然语言处理产品经理语言模型学习ai
在人工智能的飞速发展中,智能问答系统(QA系统)逐渐成为了企业内部管理、客户服务、搜索引擎等多个领域中的关键技术。今天,我们将深入探讨一个基于大模型、自然语言处理、知识检索的智能问答系统的架构,详细介绍其技术原理、流程以及未来应用前景。一、系统整体概览在这个智能问答系统中,整个流程可以大致划分为两大部分:前端问答生成与后端离线数据处理。前端部分是用户交互的核心,通过用户的输入、关键词提取、检索和问
- 【AI论文】迈向大型推理模型:大型语言模型增强推理综述
东临碣石82
人工智能语言模型自然语言处理
摘要:语言长久以来被视为人类推理不可或缺的工具。大型语言模型(LLM)的突破激发了利用这些模型解决复杂推理任务的浓厚研究兴趣。研究人员已经超越了简单的自回归词元生成,引入了“思维”的概念——即代表推理过程中间步骤的词元序列。这一创新范式使LLM能够模仿复杂的人类推理过程,如树搜索和反思性思维。近期,一种新兴的学习推理趋势采用强化学习(RL)来训练LLM掌握推理过程。这种方法通过试错搜索算法自动生成
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><