策略学习(Policy-Based Reinforcement Learning)

1. Policy Function \pi(a|s)
  1. Policy function \pi(a|s) is a probability density function.
  2. It takes state s as input.
  3. It output the probabilities for all the actions, e.g., \pi(left|s) = 0.2; \pi(right|s) = 0.1;\pi(up|s) = 0.7.
  4. The agent performs an action a random drawn from the distribution.
2. Policy Network \pi(a|s,\theta)

Policy network: Use a neural net to approximate \pi(a|s).

  1. Use policy network \pi(a|s,\theta) to approximate \pi(a|s).
  2. \theta: trainable parameters of the neural net.

策略学习(Policy-Based Reinforcement Learning)_第1张图片

关于上图:

  1. \sum_{a\in \wp }^{}\pi(a|s;\theta )=1
  2. Here, \wp={"left", "right", "up"} is the set of all actions.
  3. That is why we use softmax activation.

 

References

[1] https://www.youtube.com/watch?v=qI0vyfR2_Rc

你可能感兴趣的:(Reinforcement,Learning,学习,强化学习)