1.Matlab实现CNN卷积神经网络时间序列预测未来;
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标。
运行环境Matlab2018及以上。
程序乱码是由于Matlab版本不一致造成的,处理方式如下:
先重新下载程序,随后,如main.m文件出现乱码,则在(桌面的)文件夹中找到目标文件main.m。右击选择打开方式为文本文档(txt),查看文档是否乱码,通常不乱码。
则删除Matlab中的main.m的全部代码,将文本文档中不乱码的代码复制到Matlab中的main.m中。
%% 创建混合网络架构
% 输入特征维度
numFeatures = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
% 创建模型
layers = [...
% 输入特征
sequenceInputLayer([numFeatures 1 1],'Name','input')
sequenceFoldingLayer('Name','fold')
% 特征学习
(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
dropoutLayer(0.25,'Name','drop3')
% 全连接层
fullyConnectedLayer(numResponses,'Name','fc')
regressionLayer('Name','output') ];
layers = layerGraph(layers);
layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%% 训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;
options = trainingOptions( 'adam', ...
'MaxEpochs',500, ...
'GradientThreshold',1, ...
'InitialLearnRate',optVars.InitialLearnRate, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',400, ...
'LearnRateDropFactor',0.2, ...
'L2Regularization',optVars.L2Regularization,...
'Verbose',false, ...
'Plots','none');
%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229