【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1)

文章目录

  • 一、随机试验与随机事件
    • 1.1 随机试验
    • 1.2 样本空间
    • 1.3 随机事件
  • 二、事件的运算与关系
    • 2.1 事件的运算
    • 2.2 事件的关系
    • 2.3 事件运算的性质
  • 三、概率的公理化定义与概率的基本性质
    • 3.1 概率的公理化定义
    • 3.2 概率的基本性质
  • 写在最后


一、随机试验与随机事件

1.1 随机试验

若一个试验满足如下条件:

  1. 在相同的条件下该试验可重复进行;
  2. 试验的结果是多样的且所有可能的结果在试验前都是确定的;
  3. 某次试验之前不确定具体发生的结果,

这样的试验称为随机试验,简称试验,一般用字母 E E E 表示。

1.2 样本空间

E E E 为随机试验,随机试验 E E E所有可能的基本结果所组成的集合,称为随机试验 E E E 的样本空间,记为 Ω \Omega Ω Ω \Omega Ω 中的任意一个元素称为样本点。

1,样本空间里面所有的元素必须是最基本的,即不可再分。
2,样本空间必须是所有可能的基本结果,即具有完备性,且同一个基本结果在样本空间中只出现一次。

1.3 随机事件

E E E 为随机试验, Ω \Omega Ω 为其样本空间,则 Ω \Omega Ω 的子集称为随机事件,其中 ∅ \emptyset 称为不可能事件, Ω \Omega Ω 称为必然事件。

二、事件的运算与关系

2.1 事件的运算

A , B A,B A,B 为两个随机事件,则事件 A A A 与事件 B B B 同时发生的事件,称为事件 A , B A,B A,B积事件,记为 A B AB AB A ⋂ B A\bigcap B AB ,如下图所示。
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1)_第1张图片
事件 A A A 或事件 B B B 发生的事件(即事件 A A A 与事件 B B B 至少有一个事件发生的事件),称为事件 A , B A,B A,B和事件,记为 A + B A+B A+B A ⋃ B A\bigcup B AB ,如下图所示。
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1)_第2张图片
事件 A A A 发生而事件 B B B 不发生的事件,称为事件 A , B A,B A,B差事件,记为 A − B A-B AB 。事件 A A A 不发生的事件,称为事件 A A A补事件,记为 A ‾ \overline{A} A

2.2 事件的关系

A , B A,B A,B 为两个随机事件,若事件 A A A 发生时,事件 B B B 一定发生,则称 A A A 包含于 B B B ,记为 A ⊂ B A\subset B AB 。若有 A ⊂ B , B ⊂ A A\subset B,B\subset A AB,BA ,称两事件相等,记为 A = B A=B A=B

若事件 A A A B B B 不能同时发生,称事件 A , B A,B A,B 不相容或互斥,如下图所示。
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1)_第3张图片
若事件 A A A B B B 不能同时发生,但至少会有一个发生,称事件 A , B A,B A,B 为对立事件,如下图所示。
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1)_第4张图片

(1) A = ( A − B ) + A B A=(A-B)+AB A=(AB)+AB ,且 A − B A-B AB A B AB AB 互斥。
(2) A + B = ( A − B ) + ( B − A ) + A B A+B=(A-B)+(B-A)+AB A+B=(AB)+(BA)+AB ,且 A − B , B − A , A B A-B,B-A,AB AB,BA,AB 两两互斥。
(3) A B ⊂ A ⊂ A + B , A B ⊂ B ⊂ A + B AB\subset A\subset A+B,AB\subset B\subset A+B ABAA+B,ABBA+B
(4)事件 A , B A,B A,B 互斥的充要条件是 A B = ∅ AB=\empty AB=
(5)事件 A , B A,B A,B 对立的充要条件是 A B = ∅ AB=\empty AB= ,且 A + B = Ω A+B=\Omega A+B=Ω

2.3 事件运算的性质

好多啊,如果要记住的话可费劲了,还容易错,最好还是结合图示来记忆和推吧。

1. A B = B A , A + B = B + A ; AB=BA,A+B=B+A; AB=BA,A+B=B+A;

2. ( 1 ) A ⋃ A = A , A ⋂ A = A ; (1)A\bigcup A=A,A\bigcap A=A; (1)AA=A,AA=A;
( 2 ) A ⋂ ( B ⋃ C ) = ( A ⋂ B ) ⋃ ( A ⋂ C ) , A ⋃ ( B ⋂ C ) = ( A ⋃ B ) ⋂ ( A ⋃ C ) ; (2)A\bigcap(B\bigcup C)=(A\bigcap B)\bigcup (A\bigcap C),A \bigcup (B \bigcap C)=(A\bigcup B) \bigcap (A \bigcup C); 2A(BC)=(AB)(AC),A(BC)=(AB)(AC);

3.(1) A = ( A − B ) ⋃ A ; A=(A-B) \bigcup A; A=(AB)A;
( 2 ) ( A − B ) ⋂ A = A − B ; (2)(A-B)\bigcap A=A-B; 2(AB)A=AB;
( 3 ) A + B = ( A − B ) ⋃ A B ⋃ ( B − A ) ; (3)A+B=(A-B)\bigcup AB \bigcup (B-A); 3A+B=(AB)AB(BA);

4.(1) A + A ‾ = Ω ; A+\overline{A}=\Omega; A+A=Ω;
( 2 ) A ⋂ A ‾ = ∅ ; (2)A \bigcap \overline{A} =\empty; 2AA=;

5.(1) A ∩ B ‾ = A ‾ ∪ B ‾ ; \overline{A\cap B}=\overline{A}\cup \overline{B}; AB=AB;
( 2 ) A ‾ ∩ B ‾ = A ∪ B ‾ (2)\overline{A}\cap\overline{B}=\overline{A\cup B} 2AB=AB

第 5 条的结论比较有规律,很像戴帽子和脱帽子,都要变运算。同样有如下运算性质: A ∪ B ‾ = A ‾ ∩ B ‾ , A ‾ ∪ B ‾ = A ∩ B ‾ \overline{A\cup B}=\overline{A}\cap \overline{B},\overline{A}\cup\overline{B}=\overline{A\cap B} AB=AB,AB=AB

三、概率的公理化定义与概率的基本性质

3.1 概率的公理化定义

设随机试验 E E E 的样本空间为 Ω \Omega Ω ,在 Ω \Omega Ω 上定义满足如下条件的随机事件的函数 P ( A ) ( A ⊂ Ω ) P(A)(A \subset \Omega) P(A)(AΩ) ,称为事件 A A A 的概率:

(1)(非负性) 对任意的事件 A A A ,有 P ( A ) ≥ 0 ; P(A) \geq 0; P(A)0;

(2)(归一性) P ( Ω ) = 1 ; P(\Omega)=1; P(Ω)=1;

(3)(可列可加性) 设 A 1 , A 2 , … , A n , … A_1,A_2,\dots,A_n,\dots A1,A2,,An, 为不相容的随机事件,则有 P ( ⋃ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) , P(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}P(A_n), P(n=1An)=n=1P(An), 则对任意的 A ⊂ Ω A\subset \Omega AΩ ,称 P ( A ) P(A) P(A) 为事件 A A A 的概率。

3.2 概率的基本性质

(一) P ( ∅ ) = 0. P(\empty)=0. P()=0.
证明:令 A 1 = A 2 = ⋯ = A n = ⋯ = ∅ A_1=A_2= \dots=A_n=\dots=\empty A1=A2==An== ,有 A 1 = A 2 = ⋯ = A n = … A_1=A_2= \dots=A_n=\dots A1=A2==An= 互不相容,由可列可加性,有 P ( A 1 + A 2 + ⋯ + A n + …   ) = P ( A 1 ) + P ( A 2 ) + … P ( A n ) + … , P(A_1+A_2+ \dots+A_n+\dots)=P(A_1)+P(A_2)+\dots P(A_n)+\dots, P(A1+A2++An+)=P(A1)+P(A2)+P(An)+, A 1 + A 2 + ⋯ + A n + ⋯ = ∅ A_1+A_2+ \dots+A_n+\dots =\empty A1+A2++An+= ,可得 P ( ∅ ) = P ( ∅ ) + P ( ∅ ) + ⋯ + P ( ∅ ) + … , P(\empty)=P(\empty)+P(\empty)+\dots+P(\empty)+\dots , P()=P()+P()++P()+, P ( ∅ ) = 0 P(\empty)=0 P()=0

(二)(有限可加性) A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,,An 为互斥的有限个随机事件列,则 P ( ⋃ k = 1 n A k ) = ∑ k = 1 n P ( A k ) . P(\bigcup_{k=1}^{n}A_k)=\sum_{k=1}^{n}P(A_k). P(k=1nAk)=k=1nP(Ak). 证明:取 A n + 1 = A n + 2 = ⋯ = ∅ A_{n+1}=A_{n+2}=\dots=\empty An+1=An+2== ,则 A 1 , A 2 , … , A n , … A_1,A_2,\dots,A_n,\dots A1,A2,,An, 为不相容的随机事件,由 P ( A n + 1 ) = P ( A n + 2 ) = ⋯ = 0 P(A_{n+1})=P(A_{n+2})=\dots=0 P(An+1)=P(An+2)==0 及可列可加性,可得 P ( ⋃ n = 1 ∞ A n ) = P ( ⋃ k = 1 n A k ) = P ( A 1 ) + P ( A 2 ) + … P ( A n ) = ∑ k = 1 n P ( A k ) . P(\bigcup_{n=1}^{\infty}A_n)=P(\bigcup_{k=1}^{n}A_k)=P(A_1)+P(A_2)+\dots P(A_n)=\sum_{k=1}^{n}P(A_k). P(n=1An)=P(k=1nAk)=P(A1)+P(A2)+P(An)=k=1nP(Ak). (三)(补概率的公式) P ( A ‾ ) = 1 − P ( A ) . P(\overline{A})=1-P(A). P(A)=1P(A).

写在最后

剩下关于概率的基本公式、独立事件以及贝叶斯和概型,放到下一篇文章吧。

你可能感兴趣的:(#,数学一,概率论,考研,学习,笔记)