如果觉得写的还可以请关注微信公众号:程序猿的日常分享,定期更新分享。
上一篇介绍了Executor框架,说到了Executor框架的成员,那么它最核心的成员就是ThreadPoolExecutor,它是线程池的实现类。
ThreadPoolExecutor主要参数
ThreadPoolExecutor主要有6个参数,构造方法如下:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
1、int corePoolSize 核心线程数
2、int maximumPoolSize 最大线程数
3、long keepAliveTime + TimeUnit unit 空闲线程的存活时间
4、BlockingQueue
5、ThreadFactory threadFactory 线程工厂,用来创建新线程
6、RejectedExecutionHandler handler 处理被拒绝的任务
线程池的运行流程
通过线程池运行的流程图可以看到,当提交任务后,线程池首先会检查当前线程数,如果此时线程数小于核心线程数,比如最开始线程数量为 0,则新建线程并执行任务,随着任务的不断增加,线程数会逐渐增加并达到核心线程数,此时如果仍有任务被不断提交,就会被放入 workQueue 任务队列中,等待核心线程执行完当前任务后重新从 workQueue 中提取正在等待被执行的任务。
此时,假设我们的任务特别的多,已经达到了 workQueue 的容量上限,这时线程池就会启动后备力量,也就是 maximumPoolSize 最大线程数,线程池会在 corePoolSize 核心线程数的基础上继续创建线程来执行任务,假设任务被不断提交,线程池会持续创建线程直到线程数达到 maximumPoolSize 最大线程数,如果依然有任务被提交,这就超过了线程池的最大处理能力,这个时候线程池就会拒绝这些任务,我们可以看到实际上任务进来之后,线程池会逐一判断 corePoolSize、workQueue、maximumPoolSize,如果依然不能满足需求,则会拒绝任务。
线程池的参数详解
corePoolSize 与 maximumPoolSize
通过上面的流程图,我们了解了 corePoolSize 和 maximumPoolSize 的具体含义,corePoolSize 指的是核心线程数,线程池初始化时线程数默认为 0,当有新的任务提交后,会创建新线程执行任务,如果不做特殊设置,此后线程数通常不会再小于 corePoolSize ,因为它们是核心线程,即便未来可能没有可执行的任务也不会被销毁。随着任务量的增加,在任务队列满了之后,线程池会进一步创建新线程,最多可以达到 maximumPoolSize 来应对任务多的场景,如果未来线程有空闲,大于 corePoolSize 的线程会被合理回收。所以正常情况下,线程池中的线程数量会处在 corePoolSize 与 maximumPoolSize 的闭区间内。
keepAliveTime+时间单位
当线程池中线程数量多于核心线程数时,而此时又没有任务可做,线程池就会检测线程的 keepAliveTime,如果超过规定的时间,无事可做的线程就会被销毁,以便减少内存的占用和资源消耗。如果后期任务又多了起来,线程池也会根据规则重新创建线程,所以这是一个可伸缩的过程,比较灵活,我们也可以用 setKeepAliveTime 方法动态改变 keepAliveTime 的参数值。
ThreadFactory
ThreadFactory 实际上是一个线程工厂,它的作用是生产线程以便执行任务。我们可以选择使用默认的线程工厂,创建的线程都会在同一个线程组,并拥有一样的优先级,且都不是守护线程,我们也可以选择自己定制线程工厂,以方便给线程自定义命名,不同的线程池内的线程通常会根据具体业务来定制不同的线程名。
workQueue
workQueue是线程池的任务队列,作为一种缓冲机制,线程池会把当下没有处理的任务放入任务队列中,由于多线程同时从任务队列中获取任务是并发场景,此时就需要任务队列满足线程安全的要求,所以线程池中任务队列采用 BlockingQueue 来保障线程安全。常用的队列主要有以下几种:
- 1、LinkedBlockingQueue
LinkedBlockingQueue是一个无界缓存等待队列。当前执行的线程数量达到corePoolSize的数量时,剩余的元素会在阻塞队列里等待。(所以在使用此阻塞队列时maximumPoolSizes就相当于无效了),每个线程完全独立于其他线程。生产者和消费者使用独立的锁来控制数据的同步,即在高并发的情况下可以并行操作队列中的数据。
这个队列需要注意的是,虽然通常称其为一个无界队列,但是可以人为指定队列大小,而且由于其用于记录队列大小的参数是int类型字段,所以通常意义上的无界其实就是队列长度为 Integer.MAX_VALUE,且在不指定队列大小的情况下也会默认队列大小为 Integer.MAX_VALUE。
- 2、SynchronousQueue
SynchronousQueue没有容量,是无缓冲等待队列,是一个不存储元素的阻塞队列,会直接将任务交给消费者,必须等队列中的添加元素被消费后才能继续添加新的元素。拥有公平(FIFO)和非公平(LIFO)策略,使用SynchronousQueue阻塞队列一般要求maximumPoolSizes为无界(Integer.MAX_VALUE),避免线程拒绝执行操作。
- 3、ArrayBlockingQueue
ArrayBlockingQueue是一个有界缓存等待队列,可以指定缓存队列的大小,当正在执行的线程数等于corePoolSize时,多余的元素缓存在ArrayBlockingQueue队列中等待有空闲的线程时继续执行,当ArrayBlockingQueue已满时,加入ArrayBlockingQueue失败,会开启新的线程去执行,当线程数已经达到最大的maximumPoolSizes时,再有新的元素尝试加入ArrayBlockingQueue时会报错。
- 4、DelayedWorkQueue
DelayedWorkQueue 的特点是内部元素并不是按照放入的时间排序,而是会按照延迟的时间长短对任务进行排序,内部采用的是“堆”的数据结构。之所以线程池 ScheduledThreadPool 和 SingleThreadScheduledExecutor 选择 DelayedWorkQueue,是因为它们本身正是基于时间执行任务的,而延迟队列正好可以把任务按时间进行排序,方便任务的执行。
RejectedExecutionHandler handler
在使用线程池并且使用有界队列的时候,如果队列满了,任务添加到线程池的时候就会有问题,那么这些溢出的任务,ThreadPoolExecutor为我们提供了拒绝任务的处理方式,以便在必要的时候按照我们的策略来拒绝任务,线程池拒绝任务的时机有以下两种:
第一种情况是当我们调用 shutdown 等方法关闭线程池后,即便此时可能线程池内部依然有没执行完的任务正在执行,但是由于线程池已经关闭,此时如果再向线程池内提交任务,就会遭到拒绝。
第二种情况是线程池没有能力继续处理新提交的任务,也就是工作已经非常饱和的时候。
线程池任务拒绝策略实现了 RejectedExecutionHandler 接口,JDK 中自带了四种任务拒绝策略。分别是AbortPolicy、DiscardPolicy、DiscardOldestPolicy、CallerRunsPolicy。其中AbortPolicy是ThreadPoolExecutor默认使用。
/**
* The default rejected execution handler
*/
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();
下面介绍4种拒绝策略:
- 1、AbortPolicy(默认)
这种拒绝策略在拒绝任务时,会直接抛出一个类型为 RejectedExecutionException 的 RuntimeException,让你感知到任务被拒绝了,于是你便可以根据业务逻辑选择重试或者放弃提交等策略。
- 2、 DiscardPolicy
这种拒绝策略正如它的名字所描述的一样,当新任务被提交后直接被丢弃掉,也不会给你任何的通知,相对而言存在一定的风险,因为我们提交的时候根本不知道这个任务会被丢弃,可能造成数据丢失。
- 3、DiscardOldestPolicy
如果线程池没被关闭且没有能力执行,则会丢弃任务队列中的头结点,通常是存活时间最长的任务,这种策略与第二种不同之处在于它丢弃的不是最新提交的,而是队列中存活时间最长的,这样就可以腾出空间给新提交的任务,但同理它也存在一定的数据丢失风险。
- 4、CallerRunsPolicy
相对而言它就比较完善了,当有新任务提交后,如果线程池没被关闭且没有能力执行,则把这个任务交于提交任务的线程执行,也就是谁提交任务,谁就负责执行任务。这样做主要有两点好处:
第一点新提交的任务不会被丢弃,这样也就不会造成业务损失。
第二点好处是,由于谁提交任务谁就要负责执行任务,这样提交任务的线程就得负责执行任务,而执行任务又是比较耗时的,在这段期间,提交任务的线程被占用,也就不会再提交新的任务,减缓了任务提交的速度,相当于是一个负反馈。在此期间,线程池中的线程也可以充分利用这段时间来执行掉一部分任务,腾出一定的空间,相当于是给了线程池一定的缓冲期。