- Python 入门指南:如何在 MacOS 上轻松安装 Python
NicoleGus
pythonmacos开发语言
Python作为一门功能强大且易于学习的编程语言,已经成为许多开发者和数据科学家的首选工具。无论是初学者还是经验丰富的程序员,Python都能为他们提供强大的支持。如果你是一名MacOS用户,想要开始学习Python或者在Mac上进行开发,首先需要正确安装Python环境。本文将详细介绍如何在MacOS上安装Python,帮助你快速开始Python编程之旅。1.检查MacOS是否已预装Python
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- 投票法:简单而强大的分类利器
ningaiiii
机器学习与深度学习分类机器学习人工智能
投票法:简单而强大的分类利器在机器学习的分类任务中,我们常常需要寻找高效且准确的方法来对数据进行分类。今天,让我们一起来探讨一种简单却极为强大的分类方法——投票法。一、投票法原理(一)通俗易懂的理解投票法就像一场班级选举。假设有一个班级要选出最受欢迎的水果,每个同学心中都有自己的选择(这就好比一个个分类器给出的分类结果)。最后统计每个水果获得的票数,得票最多的水果就当选(对应分类任务中,票数最多的
- 【单层神经网络】基于MXNet库简化实现线性回归
辰尘_星启
神经网络mxnet线性回归
写在前面同最开始的两篇文章完整程序及注释'''导入使用的库'''#基本frommxnetimportautograd,nd,gluon#模型、网络frommxnet.gluonimportnnfrommxnetimportinit#学习frommxnet.gluonimportlossasgloss#数据集frommxnet.gluonimportdataasgdata'''生成测试数据集'''#
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- AtCoder备赛刷题 ABC 383 | 9 Divisors
热爱编程的通信人
算法
学习C++从娃娃抓起!记录下AtCoder(日本算法竞技网站)备赛学习过程中的题目,记录每一个瞬间。附上汇总贴:AtCoder备赛刷题|汇总【题目描述】FindthenumberofpositiveintegersnotgreaterthanNNNthathaveexactly999positivedivisors.找到不大于NNN且恰好有999个因数的正整数的数量。【输入】Theinputisg
- 线性回归基础学习
Remoa
人工智能线性回归优化gluonmxnetloss
线性回归基础学习目录:理论知识样例代码测试参考文献一、理论知识线性回归思维导图NDArray:MXNet中存储和变换数据的主要工具,提供GPU计算和自动求梯度等功能线性回归可以用神经网络图表示,也可以用矢量计算表示在Gluon中,data模块提供了有关数据处理的工具,nn模块定义了大量神经网络的层,loss模块定义了各种损失函数在MXNet的init模块(initializer)提供了模型参数化的
- 【博学谷学习记录】超强总结,用心分享 | Hive分区表和分桶表
Onzswhite
hive大数据hadoop
#博学谷IT技术支持#一、分区表分区表就是对一个表的文件数据进行分类管理,表现形式就是有很多的文件夹(dt=2019-02-27)。分区表的作用是以后查询时,我们可以手动指定对应分区的数据,避免全表扫描,提高查询效率。所谓的分区表,指的就是将数据按照表中的某一个字段进行统一归类,并存储在表中的不同的位置,也就是说,一个分区就是一类,这一类的数据对应到hdfs存储上就是对应一个目录。当我们需要进行处
- 深度学习:基于MindNLP的RAG应用开发
Landy_Jay
深度学习人工智能
什么是RAG?RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生成内容的准确性、相关性和时效性。基本思想:通过外部知识库动态检索与用户查询相关的信息,并将检索结果作为上下文输入生成模型,辅助生成更可靠的回答。与传统LLM的区别:传统LLM仅依赖预训练参数中的静态知
- MyBatis学习:多表映射
Landy_Jay
mybatis学习数据库
目录一、多表映射概念1.1多表查询结果映射思路1.2实体类设计方案1.2.1对一关系设计1.2.2对多关系设计多表映射案例准备二、对一映射三、对多映射四、多表映射总结4.1多表映射优化4.2总结:一、多表映射概念1.1多表查询结果映射思路数据库的表结构具有复杂性,不是所有数据库都达到第三范式或BCNF范式,故数据库查询结果与java对象的属性映射也变得复杂。MyBatis使用ResultMap实现
- 可能是最深入全面的图解 Java Virtual Threads
jvmjvm虚拟机
本文尽我所能,用了数月时间,在学习了JavaVirtualTheads的一些设计和实现理念后,用我所能的精炼文字和画图,去记录我的所学。是我现在能找到的最深入全面的图解JavaVirtualThreads文章。本文摘自我在编写的开源互动图书《面向技术宅的JVM内幕》中的VirtualThreads一节。如图片不清,请转回原文。VirtualThreads按这本书作者的德性,和这本书的定位,这里不会
- 深度学习篇---张量&数据流动处理
Ronin-Lotus
深度学习篇深度学习人工智能pythonTensorFlowPytorch张量数据流动处理
文章目录前言第一部分:张量张量的基本概念1.维度标量(0维)向量(1维)矩阵(2维)三维张量2.形状张量运算1.基本运算加法减法乘法除法2.广播3.变形4.转置5.切片6.拼接7.矩阵分解8.梯度运算:深度学习框架中的张量运算1.自动求导2.硬件加速3.高度优化第二部分:数据流动与处理1.磁盘(硬盘或固态硬盘)读取数据写入数据2.内存(RAM)加载程序和数据数据交换3.缓存CPU缓存磁盘缓存4.数
- threejs起步学习之创建旋转立方体并随时停止和控制旋转
three.js
直接看成品可以看到点击开始旋转的时候立方体开始旋转,点击停止旋转的时候立方体停止旋转。先放官网文档threejs官网点击en切换为中文,然后点击创建第一个场景,页面就全部变成中文啦。先使用原生js编写代码,首先就是下载threejs然后引入然后就可以使用THREE这个对象了要创建一个立方体,首先我们需要创建一个场景,一个摄像机,一个渲染器,这样我们才能透过摄像机看到渲染出的场景varwidth=5
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- Mixture of Experts(MoE)学习笔记
南七小僧
人工智能网站开发医疗器械研发学习笔记人工智能MoE大模型
1学习动机第一次了解到MoE(Mixtureofexperts),是在GPT-4模型架构泄漏事件,听说GPT-4的架构是8个GPT-3级别大小的模型以MoE架构(8*220B)组合成一个万亿参数级别的模型。不过在这之后开源社区并没有对MoE架构进行很多的探索,更多的工作还是聚焦在预训练新的大模型,在Llama2或其他模型上做Fine-tune,以及扩展大模型的ContextLength。12月8号
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- 周报 | 25.1.27-25.2.2文章汇总
双木的木
深度学习拓展阅读python拓展学习人工智能transformer算法深度学习YOLOchatgptllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|25.1.20-25.1.26文章汇总-CSDN博客机器学习AI算法工程|DeepSeekV3两周使用总结-CSDN博客Datawhale|一文详尽之SFT(监督微调,建议收藏)!-CSDN博客arXiv每日学术速递|强强联合:CNN与Transformer融合创新提升模型性能!!-CSDN博客AI生成未来|字节提出VideoWo
- 学习第七十七行
不是只有你能在乱世中成为大家的救世主
学习运维html经验分享
对于html,用vscode编程,可以用AI,同时输入!+TAB自动生成骨架,有src路径,titie提示文本,alt替换文本(图片不显示,显示的文字),width宽设置一个即可,(height),border边框,同时div和span是个块,前者大后者小,前者独一行,撒旦,em斜体,strong粗体,del删除线,ins下划线。
- 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法(Matlab代码实现)
宇哥预测优化代码学习
cnn算法matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述两阶段算法概述第一阶段:特征提取与表示学习第二阶段:调度策略生成与优化研究挑战与前景2运行结果3参考文献4Matlab代码实现1概述该文提出一种基于卷积神经网络的有效两阶段算法,以求解具有机器故障的柔性作业车间调度问题(FJSP)。建立了以最大完成时间
- 差分数组的学习
奋斗的草莓熊
学习
文章目录1.差分数组的应用场景2.如何构造一个差分数组2.1原数组转换为差分数组2.2差分数组还原为原数组3.差分数组的特性1.差分数组的应用场景需要频繁对某个区间的数组进行增减操作2.如何构造一个差分数组2.1原数组转换为差分数组#存在一个数组Nums,求出他的差分数组diff=[0]*len(nums)diff[0]=nums[0]foriinrange(1,len(nums)):diff[i
- Golang 学习路线 - Part 25:互斥锁(Mutex)
SunnyJim
golang学习路线MutexgoMutexgolangMutex
这里是Golang教程系列的第二十五部分。在本教程中,我们将学习互斥锁。我们还将学习如何使用互斥锁和channels来解决争用条件。关键部分在跳到互斥对象之前,理解并发编程中的临界区概念是很重要的。当一个程序并发运行时,修改共享资源的代码部分不应该被多个Goroutines同时访问。修改共享资源的这段代码称为临界段。例如,假设我们有一段代码,它使变量x增加1。x=x+1如果是单个的Goroutin
- Python淘宝电脑销售数据爬虫可视化分析大屏全屏系统 开题报告
字节全栈_Jwy
python爬虫flutter
博主介绍:黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。所有项目都配有从入门到精通的基础知识视频课程,学习后应对毕业设计答辩。项目配有对应开发文档、开题报告、任务书、PPT、论文模版等项目都录了发布和功能操作演示视频;项目的界面和功能都可以定制,包安装运行!!!如果需要联系我,可以在CSD
- 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法(Matlab代码实现)
Ps.729
cnn算法matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述两阶段算法概述第一阶段:特征提取与表示学习第二阶段:调度策略生成与优化研究挑战与前景2运行结果3参考文献4Matlab代码实现1概述该文提出一种基于卷积神经网络的有效两阶段算法,以求解具有机器故障的柔性作业车间调度问题(FJSP)。建立了以最大完成时间
- 使用KEIL更新STM32程序的HEX文件下载指南及DEMO
BOBO爱吃菠萝
本文还有配套的精品资源,点击获取简介:本文旨在指导开发者如何在保持源代码保密的前提下,通过KEILIDE生成HEX文件,并利用该文件更新STM32微控制器程序。文章详细介绍了整个流程,并提供了DEMO工程以便读者实践学习。1.HEX文件与微控制器1.1HEX文件的基础知识HEX文件是十六进制格式的文件,它在微控制器开发领域扮演着重要角色。这种文件格式用于存储编译后的程序代码,以便于将固件烧录进微控
- Android二维码和条形码扫描实现指南
BOBO爱吃菠萝
本文还有配套的精品资源,点击获取简介:本文详述了如何在Android平台上集成二维码和条形码扫描功能,重点介绍了使用Zxing、GoogleMobileVisionAPI和FirebaseMLKit这三个库的实践方法。内容包括选择合适的库、集成Zxing和使用FirebaseMLKit的具体步骤、扫描界面的设计、安全隐私保护以及性能优化等多个方面。通过本文的学习,开发者可以更好地掌握在Androi
- 动态规划学习:放苹果
我爱夜来香A
每天一道算法题动态规划学习算法
放苹果一、放苹果二、思路分析三、代码实现一、放苹果有m个苹果,n个盘子,允许有的盘子空着不放,请问有多少种不同的放法二、思路分析dp[i][j]表示i个苹果放入j个盘子共有多少种放法1)、当i为0时,即苹果数为0,不放,即有1种放法,dp[0][j]=1;当j为1时,即盘子数为1个,也只有一种放法dp[i][1]=12)、当苹果数小于盘子数,永远会有空盘子出现,dp[i][j]=dp[i][i]3
- 最小边际采样在分类任务中的应用
ningaiiii
机器学习与深度学习分类数据挖掘人工智能
最小边际采样在分类任务中的应用在机器学习的分类任务里,如何高效利用有限的标注数据,一直是研究的重点。最小边际采样(LeastMarginSampling)作为主动学习策略中的一种,为解决这一问题提供了独特的思路。本文将深入探讨最小边际采样在分类任务中的原理、应用以及优势与挑战。一、最小边际采样的原理最小边际采样的核心概念是基于模型预测概率来衡量样本的不确定性。在一个多分类问题中,模型会对每个样本预
- DynamicPlanning动态规划学习笔记
kxwsspz2001
笔记动态规划算法
动态规划动态规划的特点是求解决策过程最优化的过程。适用于求解将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。各阶段决策依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列。我们可以从决策序列中找到最优解LeetCode53给定一个整数数组nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。示例
- 进制转换在C/C++/Java/Kotlin中的应用(详细版)
一歲抬頭
javac语言c++
//清除标志位为了得到正确的can_id,需要在解析之前清除可能设置的标志位。通过使用&0x1FFFFFFF来实现,这个操作会清除can_id的高3位,确保结果得到的是纯粹的ID。uint32_tclean_can_id=frame.can_id&0x1FFFFFFF;因为上面的问题我不理解所以来学习进制转换的应用,进制转换非常常见,如果你搞底层这个是必须会的,我工作中也经常碰到每次看到都非常头疼
- java 转kotlin所需要的准备
m1zu
web应用javakotlin开发语言
1.学习Kotlin的基本语法1.1Kotlin的基本数据类型Kotlin与Java类似,有基本的数据类型,如Int、String、Boolean等。需要注意的是,Kotlin的类型系统是空安全的,这意味着类型默认情况下是不可空的。1.2了解Kotlin的关键字和语法Kotlin有一些独特的关键字和语法,比如val和var用于声明变量,fun用于声明函数等。1.3学习Kotlin的函数式编程特性K
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement