( A, B )---1*30*2---( 1, 0 )( 0, 1 )
让网络的输入只有1个节点,AB各由3张二值化的图片组成,排列组合A和B的所有可能性,固定收敛误差,统计收敛迭代次数
A |
B |
迭代次数 |
||||||||||
0 |
0 |
0 |
1 |
1 |
1 |
1b |
1b |
1b |
0*0*0-1*1*1 |
27152.97 |
如网络0*0*0-1*1*1,A是0,0,0,B是1,1,1.差值结构是1b,1b,1b,当收敛误差为7e-4的时候平均迭代次数为27152次。
其余各组数据如下
A |
B |
7.00E-04 |
||||||||||
0 |
0 |
0 |
1 |
1 |
1 |
1b |
1b |
1b |
0*0*0-1*1*1 |
27152.97487 |
||
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1*1*1-0*0*0 |
27300.39698 |
||
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1*1*0-0*0*0 |
28585.72362 |
||
0 |
0 |
0 |
1 |
0 |
1 |
1b |
0 |
1b |
0*0*0-1*0*1 |
28613.12563 |
||
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1*0*1-0*0*0 |
28617.34171 |
||
0 |
0 |
0 |
1 |
1 |
0 |
1b |
1b |
0 |
0*0*0-1*1*0 |
28675.66834 |
||
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0*1*1-0*0*0 |
28685.56281 |
||
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1b |
1b |
0*0*0-0*1*1 |
28721.68844 |
||
1 |
1 |
1 |
0 |
1 |
0 |
1 |
k |
1 |
1*1*1-0*1*0 |
46507.47739 |
||
1 |
1 |
1 |
1 |
0 |
0 |
k |
1 |
1 |
1*1*1-1*0*0 |
46618.54271 |
||
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
k |
1*1*1-0*0*1 |
46639.72864 |
||
0 |
0 |
1 |
1 |
1 |
1 |
1b |
1b |
k |
0*0*1-1*1*1 |
46759.24121 |
||
1 |
0 |
0 |
1 |
1 |
1 |
k |
1b |
1b |
1*0*0-1*1*1 |
46799.26131 |
||
0 |
1 |
0 |
1 |
1 |
1 |
1b |
k |
1b |
0*1*0-1*1*1 |
46822.42714 |
||
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1b |
0*0*0-0*0*1 |
63014.05025 |
||
0 |
0 |
0 |
1 |
0 |
0 |
1b |
0 |
0 |
0*0*0-1*0*0 |
63260 |
||
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1b |
0 |
0*0*0-0*1*0 |
63339.60804 |
||
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1*0*0-0*0*0 |
63340.37688 |
||
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0*0*1-0*0*0 |
63340.75879 |
||
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0*1*0-0*0*0 |
63485.92462 |
||
1 |
1 |
1 |
1 |
0 |
1 |
k |
1 |
k |
1*1*1-1*0*1 |
121408.5427 |
||
1 |
1 |
1 |
1 |
1 |
0 |
k |
k |
1 |
1*1*1-1*1*0 |
121973.3668 |
||
0 |
1 |
1 |
1 |
1 |
1 |
1b |
k |
k |
0*1*1-1*1*1 |
121988.8392 |
||
1 |
0 |
1 |
1 |
1 |
1 |
k |
1b |
k |
1*0*1-1*1*1 |
122891.6533 |
||
1 |
1 |
1 |
0 |
1 |
1 |
1 |
k |
k |
1*1*1-0*1*1 |
123237.3869 |
||
1 |
1 |
0 |
1 |
1 |
1 |
k |
k |
1b |
1*1*0-1*1*1 |
123529.2915 |
||
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0*0*0-0*0*0 |
400000 |
||
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
k |
0*0*1-0*0*1 |
400000 |
||
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1b |
1 |
0*0*1-0*1*0 |
400000 |
||
0 |
0 |
1 |
1 |
0 |
0 |
1b |
0 |
1 |
0*0*1-1*0*0 |
400000 |
||
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1b |
0*1*0-0*0*1 |
400000 |
||
0 |
1 |
0 |
0 |
1 |
0 |
0 |
k |
0 |
0*1*0-0*1*0 |
400000 |
||
0 |
1 |
0 |
1 |
0 |
0 |
1b |
1 |
0 |
0*1*0-1*0*0 |
400000 |
||
0 |
1 |
1 |
0 |
1 |
1 |
0 |
k |
k |
0*1*1-0*1*1 |
400000 |
||
0 |
1 |
1 |
1 |
0 |
1 |
1b |
1 |
k |
0*1*1-1*0*1 |
400000 |
||
0 |
1 |
1 |
1 |
1 |
0 |
1b |
k |
1 |
0*1*1-1*1*0 |
400000 |
||
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1b |
1*0*0-0*0*1 |
400000 |
||
1 |
0 |
0 |
0 |
1 |
0 |
1 |
1b |
0 |
1*0*0-0*1*0 |
400000 |
||
1 |
0 |
0 |
1 |
0 |
0 |
k |
0 |
0 |
1*0*0-1*0*0 |
400000 |
||
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1b |
k |
1*0*1-0*1*1 |
400000 |
||
1 |
0 |
1 |
1 |
0 |
1 |
k |
0 |
k |
1*0*1-1*0*1 |
400000 |
||
1 |
1 |
0 |
0 |
1 |
1 |
1 |
k |
1b |
1*1*0-0*1*1 |
400000 |
||
1 |
1 |
0 |
1 |
0 |
1 |
k |
1 |
1b |
1*1*0-1*0*1 |
400000 |
||
1 |
1 |
0 |
1 |
1 |
0 |
k |
k |
0 |
1*1*0-1*1*0 |
400000 |
||
1 |
1 |
1 |
1 |
1 |
1 |
k |
k |
k |
1*1*1-1*1*1 |
400000 |
||
1 |
0 |
1 |
1 |
1 |
0 |
k |
1b |
1 |
1*0*1-1*1*0 |
400023.7889 |
||
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1b |
k |
0*0*1-0*1*1 |
400502.5126 |
||
0 |
0 |
1 |
1 |
0 |
1 |
1b |
0 |
k |
0*0*1-1*0*1 |
400502.5126 |
||
0 |
0 |
1 |
1 |
1 |
0 |
1b |
1b |
1 |
0*0*1-1*1*0 |
400502.5126 |
||
0 |
1 |
0 |
0 |
1 |
1 |
0 |
k |
1b |
0*1*0-0*1*1 |
400502.5126 |
||
0 |
1 |
0 |
1 |
0 |
1 |
1b |
1 |
1b |
0*1*0-1*0*1 |
400502.5126 |
||
0 |
1 |
0 |
1 |
1 |
0 |
1b |
k |
0 |
0*1*0-1*1*0 |
400502.5126 |
||
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
k |
0*1*1-0*0*1 |
400502.5126 |
||
0 |
1 |
1 |
0 |
1 |
0 |
0 |
k |
1 |
0*1*1-0*1*0 |
400502.5126 |
||
0 |
1 |
1 |
1 |
0 |
0 |
1b |
1 |
1 |
0*1*1-1*0*0 |
400502.5126 |
||
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1b |
1b |
1*0*0-0*1*1 |
400502.5126 |
||
1 |
0 |
0 |
1 |
0 |
1 |
k |
0 |
1b |
1*0*0-1*0*1 |
400502.5126 |
||
1 |
0 |
0 |
1 |
1 |
0 |
k |
1b |
0 |
1*0*0-1*1*0 |
400502.5126 |
||
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
k |
1*0*1-0*0*1 |
400502.5126 |
||
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1b |
1 |
1*0*1-0*1*0 |
400502.5126 |
||
1 |
0 |
1 |
1 |
0 |
0 |
k |
0 |
1 |
1*0*1-1*0*0 |
400502.5126 |
||
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1b |
1*1*0-0*0*1 |
400502.5126 |
||
1 |
1 |
0 |
0 |
1 |
0 |
1 |
k |
0 |
1*1*0-0*1*0 |
400502.5126 |
||
1 |
1 |
0 |
1 |
0 |
0 |
k |
1 |
0 |
1*1*0-1*0*0 |
400502.5126 |
这些数据可分成6组,其中5组如下
A |
B |
迭代次数 |
等位点数值差 |
|||||||||||
0 |
0 |
0 |
1 |
1 |
1 |
1b |
1b |
1b |
0*0*0-1*1*1 |
27152.97 |
3 |
|||
0 |
0 |
0 |
1 |
1 |
0 |
1b |
1b |
0 |
0*0*0-1*1*0 |
28675.67 |
2 |
|||
0 |
0 |
1 |
1 |
1 |
1 |
1b |
1b |
k |
0*0*1-1*1*1 |
46759.24 |
2 |
|||
0 |
0 |
0 |
1 |
0 |
0 |
1b |
0 |
0 |
0*0*0-1*0*0 |
63260 |
1 |
|||
0 |
1 |
1 |
1 |
1 |
1 |
1b |
k |
k |
0*1*1-1*1*1 |
121988.8 |
1 |
这5组数据大体上是符合迭代次数与等位点数值差的反比假设的,
0 |
0 |
0 |
1 |
1 |
0 |
1b |
1b |
0 |
0*0*0-1*1*0 |
28675.67 |
2 |
|||
0 |
0 |
1 |
1 |
1 |
1 |
1b |
1b |
k |
0*0*1-1*1*1 |
46759.24 |
2 |
这两组的等位点数值差都是2但是1b,1b,k的迭代次数要大些,同样
0 |
0 |
0 |
1 |
0 |
0 |
1b |
0 |
0 |
0*0*0-1*0*0 |
63260 |
1 |
|||
0 |
1 |
1 |
1 |
1 |
1 |
1b |
k |
k |
0*1*1-1*1*1 |
121988.8 |
1 |
这两组的等位点数值差也是相同的,但是1b,k,k的迭代次数要大些。
所以只要假设k是一个大于-1且小于0的数,就可以解释所有这5组数据迭代次数的大小关系。
A |
B |
迭代次数 |
等位点数值差 |
|||||||||||
0 |
0 |
0 |
1 |
1 |
1 |
1b |
1b |
1b |
0*0*0-1*1*1 |
27152.97 |
3 |
|||
0 |
0 |
0 |
1 |
1 |
0 |
1b |
1b |
0 |
0*0*0-1*1*0 |
28675.67 |
2 |
|||
0 |
0 |
1 |
1 |
1 |
1 |
1b |
1b |
k |
0*0*1-1*1*1 |
46759.24 |
2+k |
|||
0 |
0 |
0 |
1 |
0 |
0 |
1b |
0 |
0 |
0*0*0-1*0*0 |
63260 |
1 |
|||
0 |
1 |
1 |
1 |
1 |
1 |
1b |
k |
k |
0*1*1-1*1*1 |
121988.8 |
1+k+k |
|||
-1 |
还有第6组数据,如果迭代400000次还未收敛则终止收敛,表明A或B中如果不含0,0,0,或者1,1,1则网络似乎无法收敛。