Spring Boot+Redis 实现一个简单的限流器示例

Spring Boot+Redis 实现一个简单的限流器,限制

文章目录

  • Spring Boot+Redis 实现一个简单的限流器,限制
  • 0.前言
  • 1.基础介绍
  • 2.步骤
    • 2.1. 引入依赖
    • 2.2. 配置文件
    • 2.3. 核心源码
    • 优化后
    • 再优化一下加入布隆过滤器
  • 4.总结
  • 5.参考文档
  • 6. Redis从入门到精通系列文章

Spring Boot+Redis 实现一个简单的限流器示例_第1张图片

0.前言

在Spring Boot中使用Redis和过滤器实现请求限流。过滤器将在每个请求到达时检查请求频率,并根据设定的阈值进行限制。这样可以保护您的应用程序免受恶意请求或高并发请求的影响。请根据您的具体需求和业务场景进行适当的修改和扩展。

1.基础介绍

1. 限流场景
假设我们有一个API接口,需要限制每个用户在一段时间内的请求频率。比如每秒只允许请求100次等等的业务需求。
2. 实现限流逻辑:
使用Redis的计数器功能可以实现基于时间窗口的限流算法。通过在Redis中存储请求计数器和过期时间,可以控制单位时间内的请求频率。在需要进行限流的接口或方法中,使用Redis的原子操作(如INCR和EXPIRE)来增加计数器并设置过期时间。
在每个请求到达时,检查计数器的值是否超过设定的阈值,如果超过则拒绝请求,否则允许请求继续执行。

本文我们通过Spring Boot +Redis 实现一个轻量级的消息队列。

2.步骤

2.1. 引入依赖

<dependencies>
    
    <dependency>
        <groupId>org.springframework.bootgroupId>
        <artifactId>spring-boot-starter-data-redisartifactId>
    dependency>
dependencies>

2.2. 配置文件

# Redis连接配置
spring.redis.host=127.0.0.1
spring.redis.port=6379
spring.redis.password=your_password
spring.redis.database=0

# Redis连接池配置
spring.redis.jedis.pool.max-active=50
spring.redis.jedis.pool.max-idle=10
spring.redis.jedis.pool.min-idle=5
spring.redis.jedis.pool.max-wait=-1

在上面的配置中,您可以根据实际情况修改以下属性:

  • spring.redis.host:Redis服务器的主机名或IP地址。
  • spring.redis.port:Redis服务器的端口号。
  • spring.redis.password:Redis服务器的密码(如果有的话)。
  • spring.redis.database:Redis数据库的索引,默认为0。

另外,您还可以配置Redis连接池的属性,以控制连接池的行为。在示例配置中,设置了以下连接池属性:

  • spring.redis.jedis.pool.max-active:连接池中的最大活动连接数。
  • spring.redis.jedis.pool.max-idle:连接池中的最大空闲连接数。
  • spring.redis.jedis.pool.min-idle:连接池中的最小空闲连接数。
  • spring.redis.jedis.pool.max-wait:从连接池获取连接的最大等待时间(毫秒),-1表示无限等待。

如果 使用的是YAML格式的配置文件(application.yml),可以将上述配置转换为相应的格式:

spring:
  redis:
    host: 127.0.0.1
    port: 6379
    password: your_password
    database: 0
  redis.jedis.pool:
    max-active: 50
    max-idle: 10
    min-idle: 5
    max-wait: -1

请根据您的实际Redis服务器配置进行调整,并根据需要添加其他相关配置,如超时设置、SSL配置等。

2.3. 核心源码

  1. 实现请求限流过滤器
    创建一个实现javax.servlet.Filter接口的请求限流过滤器。在过滤器中,使用Redis的计数器功能来实现请求限流逻辑。
    示例中,RequestLimitFilter是一个实现了javax.servlet.Filter接口的请求限流过滤器。它使用Redis的计数器功能来实现请求限流逻辑。每个请求到达时,根据客户端的IP地址作为Redis的键,增加计数器的值并设置过期时间为指定的时间窗口。如果计数器超过了设定的阈值(这里是100),则返回HTTP 429 Too Many Requests响应。

示例中使用的是RedisTemplate来操作Redis, 可以根据需要调整为适合您的数据类型和操作方式的RedisTemplate。

@Component
public class RequestLimitFilter implements Filter {

    @Autowired
    private RedisTemplate<String, String> redisTemplate;

    private static final String REQUEST_LIMIT_PREFIX = "requestLimit:";
    private static final long REQUEST_LIMIT = 100; // 请求限制数量
    private static final long TIME_WINDOW = 60; // 时间窗口(单位:秒)

    @Override
    public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
            throws IOException, ServletException {
        HttpServletRequest httpRequest = (HttpServletRequest) request;
        String ipAddress = getClientIpAddress(httpRequest);

        String key = REQUEST_LIMIT_PREFIX + ipAddress;
        Long counter = redisTemplate.opsForValue().increment(key, 1);

        if (counter == 1) {
            redisTemplate.expire(key, TIME_WINDOW, TimeUnit.SECONDS);
        }

        if (counter > REQUEST_LIMIT) {
            HttpServletResponse httpResponse = (HttpServletResponse) response;
            httpResponse.setStatus(HttpStatus.TOO_MANY_REQUESTS.value());
            httpResponse.getWriter().write("请求频率超过限制,请稍后再试!");
            return;
        }

        chain.doFilter(request, response);
    }

  private String getClientIpAddress(HttpServletRequest request) {
    String ipAddress = request.getHeader("X-Forwarded-For");
    if (ipAddress == null || ipAddress.isEmpty() || "unknown".equalsIgnoreCase(ipAddress)) {
        ipAddress = request.getHeader("Proxy-Client-IP");
    }
    if (ipAddress == null || ipAddress.isEmpty() || "unknown".equalsIgnoreCase(ipAddress)) {
        ipAddress = request.getHeader("WL-Proxy-Client-IP");
    }
    if (ipAddress == null || ipAddress.isEmpty() || "unknown".equalsIgnoreCase(ipAddress)) {
        ipAddress = request.getRemoteAddr();
    }
    return ipAddress;
}
}

优化后

public class RequestLimitFilter implements Filter {

    @Autowired
    private RedisTemplate<String, String> redisTemplate;

    private static final String REQUEST_LIMIT_PREFIX = "requestLimit:";
    private static final long REQUEST_LIMIT = 100; // 请求限制数量
    private static final long TIME_WINDOW = 60; // 时间窗口(单位:秒)

    @Override
    public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
            throws IOException, ServletException {
        HttpServletRequest httpRequest = (HttpServletRequest) request;
        String ipAddress = getClientIpAddress(httpRequest);

        String key = REQUEST_LIMIT_PREFIX + ipAddress;
        Long counter = redisTemplate.opsForValue().increment(key, 1);

        if (counter == 1) {
            redisTemplate.expire(key, TIME_WINDOW, TimeUnit.SECONDS);
        }

        if (counter > REQUEST_LIMIT) {
            HttpServletResponse httpResponse = (HttpServletResponse) response;
            httpResponse.setStatus(HttpStatus.TOO_MANY_REQUESTS.value());
            try (PrintWriter writer = httpResponse.getWriter()) {
                writer.write("请求频率超过限制,请稍后再试!");
            }
            return;
        }

        chain.doFilter(request, response);
    }

    private String getClientIpAddress(HttpServletRequest request) {
      ...
        return ipAddress;
    }
}

再优化一下加入布隆过滤器

使用布隆过滤器减少对Redis的访问:布隆过滤器是一种高效的概率数据结构,可以用于快速判断元素是否存在于集合中。在限制请求频率时,可以使用布隆过滤器来减少对Redis的访问。只有在布隆过滤器判断请求不是重复请求时,才进行Redis操作。

public class RequestLimitFilter implements Filter {

    @Autowired
    private RedisTemplate<String, String> redisTemplate;

    private static final String REQUEST_LIMIT_PREFIX = "requestLimit:";
    private static final long REQUEST_LIMIT = 100; // 请求限制数量
    private static final long TIME_WINDOW = 60; // 时间窗口(单位:秒)

    private BloomFilter<String> bloomFilter;

    @Override
    public void init(FilterConfig filterConfig) throws ServletException {
        // 初始化布隆过滤器
        int expectedInsertions = 1000; // 预期插入数量
        double falsePositiveProbability = 0.01; // 误判率
        bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charset.defaultCharset()), expectedInsertions, falsePositiveProbability);
    }

    @Override
    public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
            throws IOException, ServletException {
        HttpServletRequest httpRequest = (HttpServletRequest) request;
        String ipAddress = getClientIpAddress(httpRequest);

        if (bloomFilter.mightContain(ipAddress)) {
            // 布隆过滤器判断可能是重复请求,直接放行
            chain.doFilter(request, response);
            return;
        }

        String key = REQUEST_LIMIT_PREFIX + ipAddress;
        Long counter;
        boolean isNewKey = false;

        try {
            counter = redisTemplate.opsForValue().increment(key, 1);
            if (counter == 1) {
                redisTemplate.expire(key, TIME_WINDOW, TimeUnit.SECONDS);
                isNewKey = true;
            }
        } catch (Exception e) {
            // 处理Redis操作异常
            // 可以选择记录日志或采取适当的处理措施
            e.printStackTrace();
            chain.doFilter(request, response);
            return;
        }

        if (counter > REQUEST_LIMIT) {
            if (isNewKey) {
                // 删除新创建的键,避免无限增长
                redisTemplate.delete(key);
            }
            HttpServletResponse httpResponse = (HttpServletResponse) response;
            httpResponse.setStatus(HttpStatus.TOO_MANY_REQUESTS.value());
            try (PrintWriter writer = httpResponse.getWriter()) {
                writer.write("请求频率超过限制,请稍后再试!");
            }
            return;
        }

        bloomFilter.put(ipAddress); // 将IP地址添加到布隆过滤器
        chain.doFilter(request, response);
    }

    @Override
    public void destroy() {
        // 清理资源,如关闭Redis连接等
    }

    private String getClientIpAddress(HttpServletRequest request) {
        // 获取客户端IP地址的逻辑
        // ...
    }
}

在上述代码中,我们引入了布隆过滤器来减少对Redis的访问。如果布隆过滤器判断请求可能是重复请求,则直接放行,无需进行Redis操作。同时,我们还添加了对Redis操作异常的处理,并在限流超过阈值时删除新创建的键,以避免无限增长。请根据实际情况进行适当调整和完善。

  1. 注册过滤器
    在Spring Boot应用程序的配置类中注册过滤器,以便它能够在请求处理过程中生效。
@Configuration
public class WebConfig implements WebMvcConfigurer {

    @Autowired
    private RequestLimitFilter requestLimitFilter;

    @Override
    public void addInterceptors(InterceptorRegistry registry) {
        registry.addInterceptor(requestLimitFilter);
    }
}

通过将过滤器添加到addInterceptors方法中,它将被注册为Spring Boot应用程序的全局过滤器,并在请求到达时执行限流逻辑。

4.总结

其实上面我们写完的还是有问题的

  1. 如果系统部署在多个节点上,可以考虑使用分布式限流算法,如令牌桶算法或漏桶算法。这些算法可以在分布式环境中平衡请求的处理,并保证全局的请求限制。
  2. 将请求限流的参数,如请求限制数量和时间窗口,配置为可动态调整的参数。可以使用注解或配置文件来管理这些参数,以便在运行时进行调整,而无需重新编译代码。

5.参考文档

  1. Spring Data Redis官方文档:https://docs.spring.io/spring-data/redis/docs/current/reference/html/ ↗
    这个文档提供了关于如何在Spring Boot中使用Spring Data Redis进行Redis操作的详细指南。 可以了解如何配置Redis连接、使用RedisTemplate进行操作以及其他高级功能。

6. Redis从入门到精通系列文章

  • 《Redis使用Lua脚本和Redisson来保证库存扣减中的原子性和一致性》
  • 《SpringBoot Redis 使用Lettuce和Jedis配置哨兵模式》
  • 《Redis【应用篇】之RedisTemplate基本操作》
  • 《Redis 从入门到精通【实践篇】之SpringBoot配置Redis多数据源》
  • 《Redis 从入门到精通【进阶篇】之三分钟了解Redis HyperLogLog 数据结构》
  • 《Redis 从入门到精通【进阶篇】之三分钟了解Redis地理位置数据结构GeoHash》
  • 《Redis 从入门到精通【进阶篇】之高可用哨兵机制(Redis Sentinel)详解》
  • 《Redis 从入门到精通【进阶篇】之redis主从复制详解》
  • 《Redis 从入门到精通【进阶篇】之Redis事务详解》
  • 《Redis从入门到精通【进阶篇】之对象机制详解》
  • 《Redis从入门到精通【进阶篇】之消息传递发布订阅模式详解》
  • 《Redis从入门到精通【进阶篇】之持久化 AOF详解》
  • 《Redis从入门到精通【进阶篇】之持久化RDB详解》
  • 《Redis从入门到精通【高阶篇】之底层数据结构字典(Dictionary)详解》
  • 《Redis从入门到精通【高阶篇】之底层数据结构快表QuickList详解》
  • 《Redis从入门到精通【高阶篇】之底层数据结构简单动态字符串(SDS)详解》
  • 《Redis从入门到精通【高阶篇】之底层数据结构压缩列表(ZipList)详解》
  • 《Redis从入门到精通【进阶篇】之数据类型Stream详解和使用示例》
    在这里插入图片描述大家好,我是冰点,今天的Spring Boot+Redis 实现一个简单的限流器,全部内容就是这些。如果你有疑问或见解可以在评论区留言。

你可能感兴趣的:(spring,boot,redis,bootstrap,后端,java)