前端性能优化 - 回流与重绘

参考文章
https://segmentfault.com/a/1190000017329980
https://zhuanlan.zhihu.com/p/82378692
https://www.ruanyifeng.com/blog/2015/09/web-page-performance-in-depth.html
网页性能管理详解

浏览器的渲染过程

前端性能优化 - 回流与重绘_第1张图片
从上面这个图上,我们可以看到,浏览器渲染过程如下:

  1. 解析HTML,生成DOM树,解析CSS,生成CSSOM树
  2. 将DOM树和CSSOM树结合,生成渲染树(Render Tree)
  3. Layout(回流):根据生成的渲染树,进行回流(Layout),得到节点的几何信息(位置,大小)
  4. Painting(重绘):根据渲染树以及回流得到的几何信息,得到节点的绝对像素
  5. Display:将像素发送给GPU,展示在页面上

生成渲染树

前端性能优化 - 回流与重绘_第2张图片

为了构建渲染树,浏览器主要完成了以下工作:

  1. 从DOM树的根节点开始遍历每个可见节点。
  2. 对于每个可见的节点,找到CSSOM树中对应的规则,并应用它们。
  3. 根据每个可见节点以及其对应的样式,组合生成渲染树。

第一步中,既然说到了要遍历可见的节点,那么我们得先知道,什么节点是不可见的。不可见的节点包括:

  • 一些不会渲染输出的节点,比如script、meta、link等。
  • 一些通过css进行隐藏的节点。比如display:none。注意,利用visibility和opacity隐藏的节点,还是会显示在渲染树上的。只有display:none的节点才不会显示在渲染树上。

注意:渲染树只包含可见的节点

回流

前面我们通过构造渲染树,我们将可见DOM节点以及它对应的样式结合起来,可是我们还需要计算它们在设备视口(viewport)内的确切位置和大小,这个计算的阶段就是回流。

为了弄清每个对象在网站上的确切大小和位置,浏览器从渲染树的根节点开始遍历,我们可以以下面这个实例来表示:


<html>
  <head>
    <meta name="viewport" content="width=device-width,initial-scale=1">
    <title>Critial Path: Hello world!title>
  head>
  <body>
    <div style="width: 50%">
      <div style="width: 50%">Hello world!div>
    div>
  body>
html>

我们可以看到,第一个div将节点的显示尺寸设置为视口宽度的50%,第二个div将其尺寸设置为父节点的50%。而在回流这个阶段,我们就需要根据视口具体的宽度,将其转为实际的像素值。(如下图)
前端性能优化 - 回流与重绘_第3张图片

重绘

最终,我们通过构造渲染树和回流阶段,我们知道了哪些节点是可见的,以及可见节点的样式和具体的几何信息(位置、大小),那么我们就可以将渲染树的每个节点都转换为屏幕上的实际像素,这个阶段就叫做重绘节点。

重绘是视觉效果变化引起的重新绘制。比如 color 或者 background 发生了变化,那就该给触发重绘的元素化化妆,化成它想要的样子。

何时发生回流重绘

我们前面知道了,回流这一阶段主要是计算节点的位置和几何信息,那么当页面布局和几何信息发生变化的时候,就需要回流。比如以下情况:

  • 添加或删除可见的DOM元素
  • 元素的位置发生变化
  • 元素的尺寸发生变化(包括外边距、内边框、边框大小、高度和宽度等)
  • 内容发生变化,比如在 input 框中输入文字、图片被另一个不同尺寸的图片所替代。
  • 页面一开始渲染的时候(所以最少会发生一次回流)
  • 浏览器的窗口尺寸变化(因为回流是根据视口的大小来计算元素的位置和大小的)

回流的代价

我们操作 DOM 实际上是有代价的。因为 DOM 的改变会导致浏览器重新计算的它的位置和渲染的样式。

假设有这么一个场景:用户打开了一个很长的页面,就比如 ecma-262 规格文档,同时右键点击了翻译,这时下拉滚动条页面, 在一些配置比较差的电脑可能会导致网页卡死。

我们知道浏览器的翻译功能是将当前页面的文字翻译至另一种语言,这其中需要替换 DOM 元素,同时用户打开的这个文档内容没有按章分隔,因此用户每滚动一次就需要重新替换内容、计算元素位置,频繁地触发回流的后果将导致网页占有性能徒然增大,配置较差的电脑顶不住这么大的压力,从而会引发页面卡死。这就是回流的代价。

两者的关系

  • 回流一定会触发重绘,而重绘不一定会回流

我们可以把页面理解为一个黑板,黑板上有一朵画好的小花。现在我们要把这朵从左边(left)移到了右边(right),那我们是不是要先确定好右边的具体位置,画好形状(回流),再画上它原有的颜色(重绘)。

但如果我们仅仅是想换给花朵换一个颜色,那么只需擦掉花朵上的颜色,再重新涂上自己期望的颜色(重绘)就可以了。

浏览器的优化机制

由于每次重排都会造成额外的计算消耗,因此大多数浏览器都会通过队列化修改批量执行来优化重排过程。浏览器会将修改操作放入到队列里,直到过了一段时间或者操作达到了一个阈值,才清空队列。但是!当你获取布局信息的操作的时候,会强制队列刷新,比如当你访问以下属性或者使用以下方法:

  • offsetTop、offsetLeft、offsetWidth、offsetHeight
  • scrollTop、scrollLeft、scrollWidth、scrollHeight
  • clientTop、clientLeft、clientWidth、clientHeight
  • getComputedStyle()
  • getBoundingClientRect

以上属性和方法都需要返回最新的布局信息,因此浏览器不得不清空队列,触发回流重绘来返回正确的值。因此,我们在修改样式的时候,最好避免使用上面列出的属性,他们都会刷新渲染队列。如果要使用它们,最好将值缓存起来。

最小化重绘和回流

由于重绘和重排可能代价比较昂贵,因此最好就是可以减少它的发生次数。为了减少发生次数,我们可以合并多次对DOM和样式的修改,然后一次处理掉。考虑这个例子

const el = document.getElementById('test');
el.style.padding = '5px';
el.style.borderLeft = '1px';
el.style.borderRight = '2px';

例子中,有三个样式属性被修改了,每一个都会影响元素的几何结构,引起回流。当然,大部分现代浏览器都对其做了优化,因此,只会触发一次重排。但是如果在旧版的浏览器或者在上面代码执行的时候,有其他代码访问了布局信息(上文中的会触发回流的布局信息),那么就会导致三次重排。

因此,我们可以合并所有的改变然后依次处理,比如我们可以采取以下的方式:

  • 使用cssText
const el = document.getElementById('test');
el.style.cssText += 'border-left: 1px; border-right: 2px; padding: 5px;';
  • 修改CSS的class
const el = document.getElementById('test');
el.className += ' active';

批量修改DOM

当我们需要对DOM对一系列修改的时候,可以通过以下步骤减少回流重绘次数:

  1. 使元素脱离文档流
  2. 对其进行多次修改
  3. 将元素带回到文档中

该过程的第一步和第三步可能会引起回流,但是经过第一步之后,对DOM的所有修改都不会引起回流,因为它已经不在渲染树了。

有三种方式可以让DOM脱离文档流:

  • 隐藏元素,应用修改,重新显示
  • 使用文档片段(document fragment)在当前DOM之外构建一个子树,再把它拷贝回文档

考虑我们要执行一段批量插入节点的代码:

function appendDataToElement(appendToElement, data) {
    let li;
    for (let i = 0; i < data.length; i++) {
        li = document.createElement('li');
        li.textContent = 'text';
        appendToElement.appendChild(li);
    }
}

const ul = document.getElementById('list');
appendDataToElement(ul, data);

如果我们直接这样执行的话,由于每次循环都会插入一个新的节点,会导致浏览器回流一次。

我们可以使用这三种方式进行优化:

隐藏元素,应用修改,重新显示

这个会在展示和隐藏节点的时候,产生两次重绘

function appendDataToElement(appendToElement, data) {
    let li;
    for (let i = 0; i < data.length; i++) {
        li = document.createElement('li');
        li.textContent = 'text';
        appendToElement.appendChild(li);
    }
}

const ul = document.getElementById('list');
ul.style.display = 'none';

appendDataToElement(ul, data);
ul.style.display = 'block';

使用文档片段(document fragment)在当前DOM之外构建一个子树,再把它拷贝回文档

const ul = document.getElementById('list');
const fragment = document.createDocumentFragment();

appendDataToElement(fragment, data);
ul.appendChild(fragment);

避免触发同步布局事件

上文我们说过,当我们访问元素的一些属性的时候,会导致浏览器强制清空队列,进行强制同步布局。举个例子,比如说我们想将一个p标签数组的宽度赋值为一个元素的宽度,我们可能写出这样的代码:

function initP() {
    for (let i = 0; i < paragraphs.length; i++) {
        paragraphs[i].style.width = box.offsetWidth + 'px';
    }
}

这段代码看上去是没有什么问题,可是其实会造成很大的性能问题。在每次循环的时候,都读取了box的一个offsetWidth属性值,然后利用它来更新p标签的width属性。这就导致了每一次循环的时候,浏览器都必须先使上一次循环中的样式更新操作生效,才能响应本次循环的样式读取操作。每一次循环都会强制浏览器刷新队列。我们可以优化为:

const width = box.offsetWidth;
function initP() {
    for (let i = 0; i < paragraphs.length; i++) {
        paragraphs[i].style.width = width + 'px';
    }
}

对于复杂动画效果,使用绝对定位让其脱离文档流

对于复杂动画效果,由于会经常的引起回流重绘,因此,我们可以使用绝对定位,让它脱离文档流。否则会引起父元素以及后续元素频繁的回流。。

前端性能优化 - 回流与重绘_第4张图片
从上图中,我们可以看到,帧数一直都没到60。这个时候,只要我们点击一下那个按钮,把这个元素设置为绝对定位,帧数就可以稳定60。

css3硬件加速(GPU加速)

比起考虑如何减少回流重绘,我们更期望的是,根本不要回流重绘。这个时候,css3硬件加速就闪亮登场啦!!

划重点:使用css3硬件加速,可以让transform、opacity、filters这些动画不会引起回流重绘 。但是对于动画的其它属性,比如background-color这些,还是会引起回流重绘的,不过它还是可以提升这些动画的性能。

如何使用

常见的触发硬件加速的css属性:

  • transform
  • opacity
  • filters
  • Will-chang

效果

我通过使用chrome的Performance捕获了一段时间的回流重绘情况,实际结果如下图:
前端性能优化 - 回流与重绘_第5张图片

从图中我们可以看出,在动画进行的时候,没有发生任何的回流重绘。如果感兴趣你也可以自己做下实验。

重点

  • 使用css3硬件加速,可以让transform、opacity、filters这些动画不会引起回流重绘
  • 对于动画的其它属性,比如background-color这些,还是会引起回流重绘的,不过它还是可以提升这些动画的性能。

css3硬件加速的坑

  • 如果你为太多元素使用css3硬件加速,会导致内存占用较大,会有性能问题。
  • 在GPU渲染字体会导致抗锯齿无效。这是因为GPU和CPU的算法不同。因此如果你不在动画结束的时候关闭硬件加速,会产生字体模糊。

你可能感兴趣的:(性能优化,html,前端)