62、华为昇腾开发板Atlas 200I DK A2配置mmpose的hrnet模型推理python/c++

基本思想:适配mmpose模型,记录一下流水帐,环境配置和模型来自,请查看参考链接。

62、华为昇腾开发板Atlas 200I DK A2配置mmpose的hrnet模型推理python/c++_第1张图片

链接: https://pan.baidu.com/s/1IkiwuZf1anyKX1sZkYmD1g?pwd=i51s 提取码: i51s

一、转模型

(base) root@davinci-mini:~/sxj731533730# atc --model=end2end.onnx --framework=5 --output=end2end --input_format=NCHW --input_shape="input:1,3,256,256" --log=error --soc_version=Ascend310B1
ATC start working now, please wait for a moment.
...
ATC run success, welcome to the next use.

python代码


import time
import cv2
import numpy as np
from ais_bench.infer.interface import InferSession

model_path = "end2end.om"
IMG_PATH = "ca110.jpeg"




def bbox_xywh2cs(bbox, aspect_ratio, padding=1., pixel_std=200.):
    """Transform the bbox format from (x,y,w,h) into (center, scale)
    Args:
        bbox (ndarray): Single bbox in (x, y, w, h)
        aspect_ratio (float): The expected bbox aspect ratio (w over h)
        padding (float): Bbox padding factor that will be multilied to scale.
            Default: 1.0
        pixel_std (float): The scale normalization factor. Default: 200.0
    Returns:
        tuple: A tuple containing center and scale.
        - np.ndarray[float32](2,): Center of the bbox (x, y).
        - np.ndarray[float32](2,): Scale of the bbox w & h.
    """

    x, y, w, h = bbox[:4]
    center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)

    if w > aspect_ratio * h:
        h = w * 1.0 / aspect_ratio
    elif w < aspect_ratio * h:
        w = h * aspect_ratio

    scale = np.array([w, h], dtype=np.float32) / pixel_std
    scale = scale * padding

    return center, scale


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.
    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian
    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.
    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.
    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)
    Returns:
        np.ndarray: The 3rd point.
    """
    assert len(a) == 2
    assert len(b) == 2
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


def get_affine_transform(center,
                         scale,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False):
    """Get the affine transform matrix, given the center/scale/rot/output_size.
    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)
    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(scale) == 2
    assert len(output_size) == 2
    assert len(shift) == 2

    # pixel_std is 200.
    scale_tmp = scale * 200.0

    shift = np.array(shift)
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_w * -0.5], rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def bbox_xyxy2xywh(bbox_xyxy):
    """Transform the bbox format from x1y1x2y2 to xywh.
    Args:
        bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5). (left, top, right, bottom, [score])
    Returns:
        np.ndarray: Bounding boxes (with scores),
          shaped (n, 4) or (n, 5). (left, top, width, height, [score])
    """
    bbox_xywh = bbox_xyxy.copy()
    bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0]
    bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1]

    return bbox_xywh


def _get_max_preds(heatmaps):
    """Get keypoint predictions from score maps.
    Note:
        batch_size: N
        num_keypoints: K
        heatmap height: H
        heatmap width: W
    Args:
        heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps.
    Returns:
        tuple: A tuple containing aggregated results.
        - preds (np.ndarray[N, K, 2]): Predicted keypoint location.
        - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints.
    """
    assert isinstance(heatmaps,
                      np.ndarray), ('heatmaps should be numpy.ndarray')
    assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'

    N, K, _, W = heatmaps.shape
    heatmaps_reshaped = heatmaps.reshape((N, K, -1))
    idx = np.argmax(heatmaps_reshaped, 2).reshape((N, K, 1))
    maxvals = np.amax(heatmaps_reshaped, 2).reshape((N, K, 1))

    preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
    preds[:, :, 0] = preds[:, :, 0] % W
    preds[:, :, 1] = preds[:, :, 1] // W

    preds = np.where(np.tile(maxvals, (1, 1, 2)) > 0.0, preds, -1)
    return preds, maxvals


def transform_preds(coords, center, scale, output_size, use_udp=False):
    """Get final keypoint predictions from heatmaps and apply scaling and
    translation to map them back to the image.
    Note:
        num_keypoints: K
    Args:
        coords (np.ndarray[K, ndims]):
            * If ndims=2, corrds are predicted keypoint location.
            * If ndims=4, corrds are composed of (x, y, scores, tags)
            * If ndims=5, corrds are composed of (x, y, scores, tags,
              flipped_tags)
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        use_udp (bool): Use unbiased data processing
    Returns:
        np.ndarray: Predicted coordinates in the images.
    """
    assert coords.shape[1] in (2, 4, 5)
    assert len(center) == 2
    assert len(scale) == 2
    assert len(output_size) == 2

    # Recover the scale which is normalized by a factor of 200.
    scale = scale * 200.0

    if use_udp:
        scale_x = scale[0] / (output_size[0] - 1.0)
        scale_y = scale[1] / (output_size[1] - 1.0)
    else:
        scale_x = scale[0] / output_size[0]
        scale_y = scale[1] / output_size[1]

    target_coords = np.ones_like(coords)
    target_coords[:, 0] = coords[:, 0] * scale_x + center[0] - scale[0] * 0.5
    target_coords[:, 1] = coords[:, 1] * scale_y + center[1] - scale[1] * 0.5

    return target_coords


def keypoints_from_heatmaps(heatmaps,
                            center,
                            scale,
                            unbiased=False,
                            post_process='default',
                            kernel=11,
                            valid_radius_factor=0.0546875,
                            use_udp=False,
                            target_type='GaussianHeatmap'):
    # Avoid being affected
    heatmaps = heatmaps.copy()

    N, K, H, W = heatmaps.shape
    preds, maxvals = _get_max_preds(heatmaps)
    # add +/-0.25 shift to the predicted locations for higher acc.
    for n in range(N):
        for k in range(K):
            heatmap = heatmaps[n][k]
            px = int(preds[n][k][0])
            py = int(preds[n][k][1])
            if 1 < px < W - 1 and 1 < py < H - 1:
                diff = np.array([
                    heatmap[py][px + 1] - heatmap[py][px - 1],
                    heatmap[py + 1][px] - heatmap[py - 1][px]
                ])
                preds[n][k] += np.sign(diff) * .25
                if post_process == 'megvii':
                    preds[n][k] += 0.5

    # Transform back to the image
    for i in range(N):
        preds[i] = transform_preds(
            preds[i], center[i], scale[i], [W, H], use_udp=use_udp)

    if post_process == 'megvii':
        maxvals = maxvals / 255.0 + 0.5

    return preds, maxvals


def decode(output, center, scale, score_, batch_size=1):
    c = np.zeros((batch_size, 2), dtype=np.float32)
    s = np.zeros((batch_size, 2), dtype=np.float32)
    score = np.ones(batch_size)
    for i in range(batch_size):
        c[i, :] = center
        s[i, :] = scale

        score[i] = np.array(score_).reshape(-1)

    preds, maxvals = keypoints_from_heatmaps(
        output,
        c,
        s,
        False,
        'default',
        11,
        0.0546875,
        False,
        'GaussianHeatmap'
    )

    all_preds = np.zeros((batch_size, preds.shape[1], 3), dtype=np.float32)
    all_boxes = np.zeros((batch_size, 6), dtype=np.float32)
    all_preds[:, :, 0:2] = preds[:, :, 0:2]
    all_preds[:, :, 2:3] = maxvals
    all_boxes[:, 0:2] = c[:, 0:2]
    all_boxes[:, 2:4] = s[:, 0:2]
    all_boxes[:, 4] = np.prod(s * 200.0, axis=1)
    all_boxes[:, 5] = score
    result = {}

    result['preds'] = all_preds
    result['boxes'] = all_boxes

    print(result)
    return result


def draw(bgr, predict_dict, skeleton,box):
    cv2.rectangle(bgr, (int(box[0]), int(box[1])), (int(box[0]) + int(box[2]), int(box[1]) + int(box[3])),
                      (255, 0, 0))

    all_preds = predict_dict["preds"]
    for all_pred in all_preds:
        for x, y, s in all_pred:
            cv2.circle(bgr, (int(x), int(y)), 3, (0, 255, 120), -1)
        for sk in skeleton:
            x0 = int(all_pred[sk[0]][0])
            y0 = int(all_pred[sk[0]][1])
            x1 = int(all_pred[sk[1]][0])
            y1 = int(all_pred[sk[1]][1])
            cv2.line(bgr, (x0, y0), (x1, y1), (0, 255, 0), 1)
    cv2.imwrite("sxj731533730_sxj.jpg", bgr)


if __name__ == "__main__":

    # Create RKNN object
    model = InferSession(0, model_path)
    print("done")
    bbox = [13.711652 , 26.188112, 293.61298-13.711652 ,  227.78246-26.188112, 9.995332e-01]
    image_size = [256, 256]
    src_img = cv2.imread(IMG_PATH)
    img = cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB)  # hwc rgb
    aspect_ratio = image_size[0] / image_size[1]
    img_height = img.shape[0]
    img_width = img.shape[1]
    padding = 1.25
    pixel_std = 200
    center, scale = bbox_xywh2cs(
        bbox,
        aspect_ratio,
        padding,
        pixel_std)
    trans = get_affine_transform(center, scale, 0, image_size)
    img = cv2.warpAffine(
        img,
        trans, (int(image_size[0]), int(image_size[1])),
        flags=cv2.INTER_LINEAR)
    print(trans)
    img = img / 255.0  # 归一化到0~1

    img = img.transpose(2, 0, 1)
    img = np.ascontiguousarray(img, dtype=np.float32)
    # Inference
    print("--> Running model")

    outputs = model.infer([img])[0]



    print(outputs)
    predict_dict = decode(outputs, center, scale, bbox[-1])
    skeleton = [[0, 1],[0, 2],[1, 3],[0, 4],
                         [1, 4],[4,  5],[5,  7],[5,8],[5,  9],
                         [6,  7],[6,  10],[6,  11],[8,  12],
                         [9,  13],[10,  14],[11,  15],[12,  16],
                         [13,  17],[14,  18],[15,  19]]
    draw(src_img, predict_dict, skeleton,bbox)

62、华为昇腾开发板Atlas 200I DK A2配置mmpose的hrnet模型推理python/c++_第2张图片

cmakelists.txt

cmake_minimum_required(VERSION 3.16)
project(untitled10)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_STANDARD 11)
add_definitions(-DENABLE_DVPP_INTERFACE)

include_directories(/usr/local/samples/cplusplus/common/acllite/include)
include_directories(/usr/local/Ascend/ascend-toolkit/latest/aarch64-linux/include)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库
add_library(libascendcl SHARED IMPORTED)
set_target_properties(libascendcl PROPERTIES IMPORTED_LOCATION /usr/local/Ascend/ascend-toolkit/latest/aarch64-linux/lib64/libascendcl.so)
add_library(libacllite SHARED IMPORTED)
set_target_properties(libacllite PROPERTIES IMPORTED_LOCATION /usr/local/samples/cplusplus/common/acllite/out/aarch64/libacllite.so)


add_executable(untitled10 main.cpp)
target_link_libraries(untitled10 ${OpenCV_LIBS} libascendcl libacllite)

c++代码

#include 
#include "AclLiteUtils.h"
#include "AclLiteImageProc.h"
#include "AclLiteResource.h"
#include "AclLiteError.h"
#include "AclLiteModel.h"


using namespace std;
using namespace cv;
typedef enum Result {
    SUCCESS = 0,
    FAILED = 1
} Result;

struct Keypoints {
    float x;
    float y;
    float score;

    Keypoints() : x(0), y(0), score(0) {}

    Keypoints(float x, float y, float score) : x(x), y(y), score(score) {}
};

struct Box {
    float center_x;
    float center_y;
    float scale_x;
    float scale_y;
    float scale_prob;
    float score;

    Box() : center_x(0), center_y(0), scale_x(0), scale_y(0), scale_prob(0), score(0) {}

    Box(float center_x, float center_y, float scale_x, float scale_y, float scale_prob, float score) :
            center_x(center_x), center_y(center_y), scale_x(scale_x), scale_y(scale_y), scale_prob(scale_prob),
            score(score) {}
};

void bbox_xywh2cs(float bbox[], float aspect_ratio, float padding, float pixel_std, float *center, float *scale) {
    float x = bbox[0];
    float y = bbox[1];
    float w = bbox[2];
    float h = bbox[3];
    *center = x + w * 0.5;
    *(center + 1) = y + h * 0.5;
    if (w > aspect_ratio * h)
        h = w * 1.0 / aspect_ratio;
    else if (w < aspect_ratio * h)
        w = h * aspect_ratio;


    *scale = (w / pixel_std) * padding;
    *(scale + 1) = (h / pixel_std) * padding;
}

void rotate_point(float *pt, float angle_rad, float *rotated_pt) {
    float sn = sin(angle_rad);
    float cs = cos(angle_rad);
    float new_x = pt[0] * cs - pt[1] * sn;
    float new_y = pt[0] * sn + pt[1] * cs;
    rotated_pt[0] = new_x;
    rotated_pt[1] = new_y;

}

void _get_3rd_point(cv::Point2f a, cv::Point2f b, float *direction) {

    float direction_0 = a.x - b.x;
    float direction_1 = a.y - b.y;
    direction[0] = b.x - direction_1;
    direction[1] = b.y + direction_0;


}

void get_affine_transform(float *center, float *scale, float rot, float *output_size, float *shift, bool inv,
                          cv::Mat &trans) {
    float scale_tmp[] = {0, 0};
    scale_tmp[0] = scale[0] * 200.0;
    scale_tmp[1] = scale[1] * 200.0;
    float src_w = scale_tmp[0];
    float dst_w = output_size[0];
    float dst_h = output_size[1];
    float rot_rad = M_PI * rot / 180;
    float pt[] = {0, 0};
    pt[0] = 0;
    pt[1] = src_w * (-0.5);
    float src_dir[] = {0, 0};
    rotate_point(pt, rot_rad, src_dir);
    float dst_dir[] = {0, 0};
    dst_dir[0] = 0;
    dst_dir[1] = dst_w * (-0.5);
    cv::Point2f src[3] = {cv::Point2f(0, 0), cv::Point2f(0, 0), cv::Point2f(0, 0)};
    src[0] = cv::Point2f(center[0] + scale_tmp[0] * shift[0], center[1] + scale_tmp[1] * shift[1]);
    src[1] = cv::Point2f(center[0] + src_dir[0] + scale_tmp[0] * shift[0],
                         center[1] + src_dir[1] + scale_tmp[1] * shift[1]);
    float direction_src[] = {0, 0};
    _get_3rd_point(src[0], src[1], direction_src);
    src[2] = cv::Point2f(direction_src[0], direction_src[1]);
    cv::Point2f dst[3] = {cv::Point2f(0, 0), cv::Point2f(0, 0), cv::Point2f(0, 0)};
    dst[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
    dst[1] = cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]);
    float direction_dst[] = {0, 0};
    _get_3rd_point(dst[0], dst[1], direction_dst);
    dst[2] = cv::Point2f(direction_dst[0], direction_dst[1]);

    if (inv) {
        trans = cv::getAffineTransform(dst, src);
    } else {
        trans = cv::getAffineTransform(src, dst);
    }


}


void
transform_preds(std::vector  coords, std::vector  &target_coords, float *center, float *scale,
                int w, int h, bool use_udp = false) {
    float scale_x[] = {0, 0};
    float temp_scale[] = {scale[0] * 200, scale[1] * 200};
    if (use_udp) {
        scale_x[0] = temp_scale[0] / (w - 1);
        scale_x[1] = temp_scale[1] / (h - 1);
    } else {
        scale_x[0] = temp_scale[0] / w;
        scale_x[1] = temp_scale[1] / h;
    }
    for (int i = 0; i < coords.size(); i++) {
        target_coords[i].x = coords[i].x * scale_x[0] + center[0] - temp_scale[0] * 0.5;
        target_coords[i].y = coords[i].y * scale_x[1] + center[1] - temp_scale[1] * 0.5;
    }

}


int main() {
    const char *modelPath = "../end2end.om";

    bool flip_test = true;
    bool heap_map = false;
    float keypoint_score = 0.3f;
    cv::Mat bgr = cv::imread("../ca110.jpeg");
    cv::Mat rgb;
    cv::cvtColor(bgr, rgb, cv::COLOR_BGR2RGB);

    float image_target_w = 256;
    float image_target_h = 256;
    float padding = 1.25;
    float pixel_std = 200;
    float aspect_ratio = image_target_h / image_target_w;
    float bbox[] = {13.711652, 26.188112, 293.61298, 227.78246, 9.995332e-01};// 需要检测框架 这个矩形框来自检测框架的坐标 x y w h score
    bbox[2] = bbox[2] - bbox[0];
    bbox[3] = bbox[3] - bbox[1];
    float center[2] = {0, 0};
    float scale[2] = {0, 0};
    bbox_xywh2cs(bbox, aspect_ratio, padding, pixel_std, center, scale);
    float rot = 0;
    float shift[] = {0, 0};
    bool inv = false;
    float output_size[] = {image_target_h, image_target_w};
    cv::Mat trans;
    get_affine_transform(center, scale, rot, output_size, shift, inv, trans);
    std::cout << trans << std::endl;
    std::cout << center[0] << " " << center[1] << " " << scale[0] << " " << scale[1] << std::endl;
    cv::Mat detect_image;//= cv::Mat::zeros(image_target_w ,image_target_h, CV_8UC3);
    cv::warpAffine(rgb, detect_image, trans, cv::Size(image_target_h, image_target_w), cv::INTER_LINEAR);
    //cv::imwrite("te.jpg",detect_image);
    std::cout << detect_image.cols << " " << detect_image.rows << std::endl;



    // inference
    bool release = false;
    //SampleYOLOV7 sampleYOLO(modelPath, target_width, target_height);

    float *imageBytes;
    AclLiteResource aclResource_;
    AclLiteImageProc imageProcess_;
    AclLiteModel model_;
    aclrtRunMode runMode_;
    ImageData resizedImage_;
    const char *modelPath_;
    int32_t modelWidth_;
    int32_t modelHeight_;

    AclLiteError ret = aclResource_.Init();
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("resource init failed, errorCode is %d", ret);
        return FAILED;
    }

    ret = aclrtGetRunMode(&runMode_);
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("get runMode failed, errorCode is %d", ret);
        return FAILED;
    }

    // init dvpp resource
    ret = imageProcess_.Init();
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("imageProcess init failed, errorCode is %d", ret);
        return FAILED;
    }

    // load model from file
    ret = model_.Init(modelPath);
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("model init failed, errorCode is %d", ret);
        return FAILED;
    }


    // data standardization
   float meanRgb[3] = {0, 0, 0};
    float stdRgb[3] = {1 / 255.0f, 1 / 255.0f, 1 / 255.0f};
    // create malloc of image, which is shape with NCHW
    //const float meanRgb[3] = {0.485f * 255.f, 0.456f * 255.f, 0.406f * 255.f};
    //const float stdRgb[3] = {(1 / 0.229f / 255.f), (1 / 0.224f / 255.f), (1 / 0.225f / 255.f)};



    int32_t channel = detect_image.channels();
    int32_t resizeHeight = detect_image.rows;
    int32_t resizeWeight = detect_image.cols;
    imageBytes = (float *) malloc(channel * image_target_w * image_target_h * sizeof(float));
    memset(imageBytes, 0, channel * image_target_h * image_target_w * sizeof(float));

    // image to bytes with shape HWC to CHW, and switch channel BGR to RGB

    for (int c = 0; c < channel; ++c) {
        for (int h = 0; h < resizeHeight; ++h) {
            for (int w = 0; w < resizeWeight; ++w) {
                int dstIdx = c * resizeHeight * resizeWeight + h * resizeWeight + w;

                imageBytes[dstIdx] = static_cast(
                        (detect_image.at(h, w)[c] -
                         1.0f * meanRgb[c]) * 1.0f * stdRgb[c] );
            }
        }
    }


    std::vector  inferOutputs;
    ret = model_.CreateInput(static_cast(imageBytes),
                             channel * image_target_w * image_target_h * sizeof(float));
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("CreateInput failed, errorCode is %d", ret);
        return FAILED;
    }

    // inference
    ret = model_.Execute(inferOutputs);
    if (ret != ACL_SUCCESS) {
        ACLLITE_LOG_ERROR("execute model failed, errorCode is %d", ret);
        return FAILED;
    }

    // for()
    float *data = static_cast(inferOutputs[0].data.get());
    //输出维度
    int shape_d =1;
    int shape_c = 20;
    int shape_w = 64;
    int shape_h = 64;
    std::vector vec_heap;
    for (int i = 0; i < shape_c * shape_h * shape_w; i++) {
        vec_heap.push_back(data[i]);
    }


    std::vector  all_preds;
    std::vector idx;
    for (int i = 0; i < shape_c; i++) {
        auto begin = vec_heap.begin() + i * shape_w * shape_h;
        auto end = vec_heap.begin() + (i + 1) * shape_w * shape_h;
        float maxValue = *max_element(begin, end);
        int maxPosition = max_element(begin, end) - begin;
        all_preds.emplace_back(Keypoints(0, 0, maxValue));
        idx.emplace_back(maxPosition);
    }
    std::vector  vec_point;
    for (int i = 0; i < idx.size(); i++) {
        int x = idx[i] % shape_w;
        int y = idx[i] / shape_w;
        vec_point.emplace_back(cv::Point2f(x, y));
    }


    for (int i = 0; i < shape_c; i++) {
        int px = vec_point[i].x;
        int py = vec_point[i].y;
        if (px > 1 && px < shape_w - 1 && py > 1 && py < shape_h - 1) {
            float diff_0 = vec_heap[py * shape_w + px + 1] - vec_heap[py * shape_w + px - 1];
            float diff_1 = vec_heap[(py + 1) * shape_w + px] - vec_heap[(py - 1) * shape_w + px];
            vec_point[i].x += diff_0 == 0 ? 0 : (diff_0 > 0) ? 0.25 : -0.25;
            vec_point[i].y += diff_1 == 0 ? 0 : (diff_1 > 0) ? 0.25 : -0.25;
        }
    }
    std::vector  all_boxes;
    if (heap_map) {
        all_boxes.emplace_back(Box(center[0], center[1], scale[0], scale[1], scale[0] * scale[1] * 400, bbox[4]));
    }
    transform_preds(vec_point, all_preds, center, scale, shape_w, shape_h);
    //0 L_Eye  1 R_Eye 2 L_EarBase 3 R_EarBase 4 Nose 5 Throat 6 TailBase 7 Withers 8 L_F_Elbow 9 R_F_Elbow 10 L_B_Elbow 11 R_B_Elbow
    // 12 L_F_Knee 13 R_F_Knee 14 L_B_Knee 15 R_B_Knee 16 L_F_Paw 17 R_F_Paw 18 L_B_Paw 19  R_B_Paw

    int skeleton[][2] = {{0,  1},
                         {0,  2},
                         {1,  3},
                         {0,  4},
                         {1,  4},
                         {4,  5},
                         {5,  7},
                         {5,  8},
                         {5,  9},
                         {6,  7},
                         {6,  10},
                         {6,  11},
                         {8,  12},
                         {9,  13},
                         {10, 14},
                         {11, 15},
                         {12, 16},
                         {13, 17},
                         {14, 18},
                         {15, 19}};

    cv::rectangle(bgr, cv::Point(bbox[0], bbox[1]), cv::Point(bbox[0] + bbox[2], bbox[1] + bbox[3]),
                  cv::Scalar(255, 0, 0));
    for (int i = 0; i < all_preds.size(); i++) {
        if (all_preds[i].score > keypoint_score) {
            cv::circle(bgr, cv::Point(all_preds[i].x, all_preds[i].y), 3, cv::Scalar(0, 255, 120), -1);//画点,其实就是实心圆
        }
    }
    for (int i = 0; i < sizeof(skeleton) / sizeof(sizeof(skeleton[1])); i++) {
        int x0 = all_preds[skeleton[i][0]].x;
        int y0 = all_preds[skeleton[i][0]].y;
        int x1 = all_preds[skeleton[i][1]].x;
        int y1 = all_preds[skeleton[i][1]].y;

        cv::line(bgr, cv::Point(x0, y0), cv::Point(x1, y1),
                 cv::Scalar(0, 255, 0), 1);

    }
    cv::imwrite("../image.jpg", bgr);


    model_.DestroyResource();
    imageProcess_.DestroyResource();
    aclResource_.Release();
    return SUCCESS;
}

测试结果

/root/sxj731533730/cmake-build-debug/untitled10
[0.7316863791031282, -0, 15.56737128098375;
 -4.62405306581973e-17, 0.7316863791031282, 35.08659815701316]
153.662 126.985 1.74938 1.74938
256 256
[INFO]  Acl init ok
[INFO]  Open device 0 ok
[INFO]  Use default context currently
[INFO]  dvpp init resource ok
[INFO]  Load model ../end2end.om success
[INFO]  Create model description success
[INFO]  Create model(../end2end.om) output success
[INFO]  Init model ../end2end.om success
[INFO]  Unload model ../end2end.om success
[INFO]  destroy context ok
[INFO]  Reset device 0 ok
[INFO]  Finalize acl ok

Process finished with exit code 0

62、华为昇腾开发板Atlas 200I DK A2配置mmpose的hrnet模型推理python/c++_第3张图片

参考自己的博客

48、mmpose中hrnet关键点识别模型转ncnn和mnn,并进行训练和部署_hrnet ncnn_sxj731533730的博客-CSDN博客

61、华为昇腾开发板Atlas 200I DK A2初步测试,yolov7_batchsize_1&yolov7_batchsize_3的python/c++推理测试_sxj731533730的博客-CSDN博客

你可能感兴趣的:(硬件的基本知识,人工智能)