Prompt:结构化 Prompt【Prompt tuning是一种微调方法,使用简短的提示/问题/示例(prompt)为模型提供了上下文,进而指导模型执行特定任务】

什么是结构化 Prompt ?

结构化的思想很普遍,结构化内容也很普遍,我们日常写作的文章,看到的书籍都在使用标题、子标题、段落、句子等语法结构。结构化 Prompt 的思想通俗点来说就是像写文章一样写 Prompt。

为了阅读、表达的方便,我们日常有各种写作的模板,用来控制内容的组织呈现形式。例如古代的八股文、现代的简历模板、学生实验报告模板、论文模板等等模板。所以结构化编写 Prompt 自然也有各种各样优质的模板帮助你把 Prompt 写的更轻松、性能更好。所以写结构化 Prompt 可以有各种各样的模板,你可以像用 PPT 模板一样选择或创造自己喜欢的模板。

在这之前,虽然也有类似结构化思想,但是更多体现在思维上,缺乏在 prompt 上的具体体现。

例如知名的 CRISPE 框架,CRISPE 分别代表以下含义:

  • CR: Capacity and Role(能力与角色)。你希望 ChatGPT 扮演怎样的角色。
  • I: Insight(洞察力),背景信息和上下文(坦率说来我觉得用 Context 更好)。
  • S: Statement(指令),你希望 ChatGPT 做什么。
  • P: Personality(个性),你希望 ChatGPT 以什么风格或方式回答你。
  • E: Experiment(尝试),要求 Chat

你可能感兴趣的:(大模型(预训练模型),prompt)