sentinel、sentinel-dashboard使用

全示例仓库:
clouddemo: https://gitee.com/huqingtao/sentinel-dashboard.git
sentinel-dashboard: https://gitee.com/huqingtao/spring-cloud-project.git

单项目多端口启动

VMoptions: -Dserver.port=8081

nacos

  1. 本地nacos单机启动

    bin目录

    startup.cmd -m standalone

  2. nacos web后台 nacos/nacos

    http://localhost:8848/nacos/index.html

  3. 恢复nacos配置中心的sentinel配置

    SENTINEL_GROUP.zip

    解压移到:C:\Users\huqingtao\nacos\config\fixed-127.0.0.1_8848_nacos\snapshot

gateway核心

filter

Spring-Cloud-Gateway的过滤器接口分为两种:

GlobalFilter : 全局过滤器,不需要在配置文件中配置,作用在所有的路由上,最终通过GatewayFilterAdapter包装成GatewayFilterChain可识别的过滤器

GatewayFilter : 需要通过spring.cloud.routes.filters 配置在具体路由下,只作用在当前路由上或通过spring.cloud.default-filters配置在全局,作用在所有路由上。

验证动态参数filter:AddUserInfoFilter

http://localhost:7060/provider/test/hello?str=kingtao
http://localhost:7060/provider/test/hello3?str=kingtao
http://localhost:7060/provider/test/hello5?str=kingtao&num=0
http://localhost:7060/provider/test/hello5?str=kingtao&num=1
http://localhost:7060/provider/test/hello6?str=kingtao&num=1
http://localhost:7060/provider/test/hello7?str=kingtao&num=1
http://localhost:7060/provider/test/hello8?str=kingtao
http://localhost:7060/provider/test/hello9?str=kingtao
http://localhost:7060/provider/test/hello10?str=kingtao

http://localhost:7060/consumer/test/send?str=kingtao
http://localhost:7060/consumer/test/send2?str=kingtao

sentinel 文档

  1. 本地sentinel单机启动

    java -server -Xms64m -Xmx256m -Dserver.port=8849 -Dcsp.sentinel.dashboard.server=localhost:8849 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.8.0.jar

  2. sentinel web后台 sentinel/sentinel

    http://localhost:8849

  3. 规则配置说明

    • 流控规则

      [
       {
         // 资源名
         "resource": "/test",
         // 针对来源,若为 default 则不区分调用来源
         "limitApp": "default",
         // 限流阈值类型(1:QPS;0:并发线程数)
         "grade": 1,
         // 阈值
         "count": 1,
         // 是否是集群模式
         "clusterMode": false,
         // 流控效果(0:快速失败;1:Warm Up(预热模式);2:排队等待)
         "controlBehavior": 0,
         // 流控模式(0:直接;1:关联;2:链路)
         "strategy": 0,
         // 预热时间(秒,预热模式需要此参数)
         "warmUpPeriodSec": 10,
         // 超时时间(排队等待模式需要此参数)
         "maxQueueingTimeMs": 500,
         // 关联资源、入口资源(关联、链路模式)
         "refResource": "rrr"
       }
      ]
      
      示例:
      [
          {
              "resource": "provider-test0",
              "limitApp": "default",
              "grade": 1,
              "count": 1,
              "strategy": 0,
              "controlBehavior": 0,
              "clusterMode": false
          },
          {
              "resource": "provider-hello3",
              "limitApp": "default",
              "grade": 1,
              "count": 1,
              "strategy": 0,
              "controlBehavior": 0,
              "clusterMode": false
          }
      ]
      
    • 熔断降级规则: 熔断降级强依赖自定义fallBack方法

      [
       {
        // 资源名
         "resource": "/test1",
         "limitApp": "default",
         // 熔断策略(0:慢调用比例,1:异常比率,2:异常计数)
         "grade": 0,
         // 最大RT、比例阈值、异常数
         "count": 200,
         // 慢调用比例阈值,仅慢调用比例模式有效(1.8.0 引入)
         "slowRatioThreshold": 0.2,
         // 最小请求数
         "minRequestAmount": 5,
         // 当单位统计时长(类中默认1000)
         "statIntervalMs": 1000,
         // 熔断时长
         "timeWindow": 10
       }
      ]
      
      示例:
      [
         {
             "resource": "provider-hello5",
             "limitApp": "default",
             "grade": 2,
             "count": 1,
             "slowRatioThreshold": 0.1,
             "minRequestAmount": 2,
             "statIntervalMs": 2000,
             "timeWindow": 10
         },{
             "resource": "provider-hello6",
             "limitApp": "default",
             "grade": 0,
             "count": 50,
             "slowRatioThreshold": 0.5,
             "minRequestAmount": 4,
             "statIntervalMs": 2000,
             "timeWindow": 10
         },{
             "resource": "/test/hello7",
             "limitApp": "default",
             "grade": 0,
             "count": 50,
             "slowRatioThreshold": 0.5,
             "minRequestAmount": 4,
             "statIntervalMs": 2000,
             "timeWindow": 10
         }
      ]
      
    • 热点参数规则:热点参数的注意点,参数必须是基本类型或者String(也就是方法体上面的参数必须为基本类型或String)

      [
       {
        // 资源名
         "resource": "/test1",
         // 限流模式(QPS 模式,不可更改)
         "grade": 1,
         // 参数索引
         "paramIdx": 0,
         // 单机阈值
         "count": 13,
         // 统计窗口时长
         "durationInSec": 6,
         // 是否集群 默认false
         "clusterMode": 默认false,
         // 
         "burstCount": 0,
         // 集群模式配置
         "clusterConfig": {
           // 
           "fallbackToLocalWhenFail": true,
           // 
           "flowId": 2,
           // 
           "sampleCount": 10,
           // 
           "thresholdType": 0,
           // 
           "windowIntervalMs": 1000
         },
         // 流控效果(支持快速失败和匀速排队模式)
         "controlBehavior": 0,
         // 
         "limitApp": "default",
         // 
         "maxQueueingTimeMs": 0,
         // 高级选项
         "paramFlowItemList": [
           {
            // 参数类型
             "classType": "int",
            // 限流阈值
             "count": 222,
            // 参数值
             "object": "2"
           }
         ]
       }
      ]
      
      示例:
      [
       {
         "resource": "provider-test8",
         "grade": 1,
         "paramIdx": 0,
         "count": 2,
         "durationInSec": 2,
         "burstCount": 0,
         "controlBehavior": 0,
         "limitApp": "default"
       }
      ]
      
    • 系统规则:无resource,是对整个服务进程资源判断,qps模式慎用

      [
       {
        // RT
         "avgRt": 1,
         // CPU 使用率
         "highestCpuUsage": -1,
         // LOAD
         "highestSystemLoad": -1,
         // 线程数
         "maxThread": -1,
         // 入口 QPS
         "qps": -1
       }
      ]
      
      示例:
      [
        {
          "avgRt": -1,
          "highestCpuUsage": -1,
          "highestSystemLoad": -1,
          "maxThread": -1,
          "qps": 2
        }
      ]
      
    • 授权规则:依赖自定义解析来源信息组件:RequestOriginParser

    [
     {
       // 资源名
       "resource": "sentinel_spring_web_context",
      // 流控应用
       "limitApp": "appA,appB",
       // 授权类型(0代表白名单;1代表黑名单。)
       "strategy": 0
     }
    ]
    
    示例:
    [
        {
        "resource": "provider-test10",
        "limitApp": "gateway",
        "strategy": 1
        }
    ]
    
  4. 特别说明

    • 资源名-【自定义名】:如果sentinel后台设置得资源名为@SentinelResource的value,则触发的是全局异常:{@link com.example.providerservice.advice.GlobalExceptionHandler}
      • a.当且仅当自定义名时,才能触发fallback、blockHandler
    • 资源名-【路由】:如果sentinel后台设置的资源名为路由[/test/hello],则触发的是全局Block异常:{@link com.example.providerservice.sentinel.GlobalBlockExceptionHandler}
  5. 全局异常GlobalExceptionHandler、全局Block异常GlobalBlockExceptionHandler 和 fallback、blockHandler

    • 全局异常和全局Block异常,项目中建议都添加
      • 使用场景:接口源端流控
      • 优点:便于偷懒,可随时对未设置资源名的接口流控
    • fallback、blockHandler,项目中按需添加
      • 使用场景:客户端对接口源端调用流控
      • 优点:对远端接口流控时,可自定义资源返回结果
      • 异同点:
        • fallback:失败调用,若资源方法、接口出现未知异常,就会走fallback
        • blockHandler:sentinel定义的失败调用或者限制调用,如限流、熔断降级,就会走blockHandler
    • 关于[系统规则流控]
      • 不可指定资源名:默认触发全局Block异常
  6. 集群限流:需要注意

    集群限流只有特定场景需要使用

    单机流控的好处:集群扩容时不用考虑从新设置流控参数
    + Token Server自动管理(分配/选举)
    + Token Server高可用

  7. 自定义全局降级方法:BlockExceptionHandler 源码实现已代替UrlBlockHandler

  8. 引入sentinel所需依赖

    
        com.alibaba.cloud
        spring-cloud-starter-alibaba-nacos-discovery
    
    
        com.alibaba.cloud
        spring-cloud-starter-alibaba-sentinel
    
    
        com.alibaba.csp
        sentinel-datasource-nacos
    
    
  9. sentinel使用nacos配置中心

    sentinel:
          transport:
            dashboard: 127.0.0.1:8849
          # sentinel datasource nacos :http://blog.didispace.com/spring-cloud-alibaba-sentinel-2-1/
          datasource:
            flow:
              nacos:
                server-addr: 127.0.0.1:8848
                dataId: ${spring.application.name}-flow-rules
                groupId: SENTINEL_GROUP
                rule-type: flow
            degrade:
              nacos:
                server-addr: 127.0.0.1:8848
                dataId: ${spring.application.name}-degrade-rules
                groupId: SENTINEL_GROUP
                rule-type: degrade
            system:
              nacos:
                server-addr: 127.0.0.1:8848
                dataId: ${spring.application.name}-system-rules
                groupId: SENTINEL_GROUP
                rule-type: system
            authority:
              nacos:
                server-addr: 127.0.0.1:8848
                dataId: ${spring.application.name}-authority-rules
                groupId: SENTINEL_GROUP
                rule-type: authority
            param-flow:
              nacos:
                server-addr: 127.0.0.1:8848
                dataId: ${spring.application.name}-param-flow-rules
                groupId: SENTINEL_GROUP
                rule-type: param-flow
    
  10. 常见限流算法

    • 令牌桶算法

      所有的请求在处理之前都需要拿到一个可用的令牌才会被处理;

      根据限流大小,设置按照一定的速率往桶里添加令牌;

      桶设置最大的放置令牌限制,当桶满时、新添加的令牌就被丢弃或者拒绝;

      请求达到后首先要获取令牌桶中的令牌,拿着令牌才可以进行其他的业务逻辑,处理完业务逻辑之后,将令牌直接删除;

      令牌桶有最低限额,当桶中的令牌达到最低限额的时候,请求处理完之后将不会删除令牌,以此保证足够的限流;

    • 漏桶算法

      就是注水流水过程

      以任务速率流入水,以固定速率流出水

      弊端:无法应对短时间的突发流量

    • 滑动窗口

      • 计数器算法

        计数器算法是限流算法里最简单也是最容易实现的一种算法。

        比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个。

        那么我们可以这么做:在一开 始的时候,我们可以设置一个计数器counter,每当一个请求过来的时候,counter就加1,如果counter的值大于100并且该请求与第一个 请求的间隔时间还在1分钟之内,那么说明请求数过多;

        如果该请求与第一个请求的间隔时间大于1分钟,且counter的值还在限流范围内,那么就重置 counter

      • 滑动窗口算法

        更加细粒度的计数器算法 ==》 就是滑动窗口算法

        当滑动窗口的格子划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确

provider接口

http://localhost:7073/provider/test/hello?str=kingtao&userId=100

consumer

  1. openfeign调用provider
    • 开启sentinel支持
    feign:
      sentinel:
        enabled: true
    
    • 可设置全局ribbon超时
    ribbon:
      ReadTimeout: 1000
      ConnectTimeout: 1000
    
    • feignclient
    @FeignClient(value = "provider-service", fallback = ProviderClientFallBack.class)
    
    @SentinelResource: 对于feignClient资源名定义,不可定义,
       直接使用:GET:http://[nacos-servicename]/[route]
       例:GET:http://provider-service/provider/test/hello
    

sleuth + zipkin

  1. 基本使用

    • pom依赖
        
            org.springframework.cloud
            spring-cloud-starter-sleuth
        
        
            org.springframework.cloud
            spring-cloud-starter-zipkin
        
    
    • yml配置
      zipkin:
        base-url: http://localhost:9411
        sender:
          type: web # 可配置web、mq
      sleuth:
        sampler:
          probability: 1.0
    
  2. 原理介绍sleuth

  3. zipkin

    • 本地启动、访问
        统计数据保存到内存启动方式
        java -Xms64m -Xmx256m -jar zipkin-server-2.23.9-exec.jar
        
        统计数据保存到mysql启动方式
        java -Xms64m -Xmx256m -jar zipkin-server-2.23.9-exec.jar --STORAGE_TYPE=mysql --MYSQL_HOST=127.0.0.1 --MYSQL_TCP_PORT=3306 --MYSQL_DB=zipkin --MYSQL_USER=root --MYSQL_PASS=123456    
    
        访问地址
        http://localhost:9411/zipkin/
    
    • zipkin统计数据保存到mysql
      • 创建mysql相关表
          CREATE DATABASE zipkin;
      
          CREATE TABLE IF NOT EXISTS zipkin_spans (
            `trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
            `trace_id` BIGINT NOT NULL,
            `id` BIGINT NOT NULL,
            `name` VARCHAR(255) NOT NULL,
            `remote_service_name` VARCHAR(255),
            `parent_id` BIGINT,
            `debug` BIT(1),
            `start_ts` BIGINT COMMENT 'Span.timestamp(): epoch micros used for endTs query and to implement TTL',
            `duration` BIGINT COMMENT 'Span.duration(): micros used for minDuration and maxDuration query',
            PRIMARY KEY (`trace_id_high`, `trace_id`, `id`)
          ) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;
          
          ALTER TABLE zipkin_spans ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTracesByIds';
          ALTER TABLE zipkin_spans ADD INDEX(`name`) COMMENT 'for getTraces and getSpanNames';
          ALTER TABLE zipkin_spans ADD INDEX(`remote_service_name`) COMMENT 'for getTraces and getRemoteServiceNames';
          ALTER TABLE zipkin_spans ADD INDEX(`start_ts`) COMMENT 'for getTraces ordering and range';
          
          CREATE TABLE IF NOT EXISTS zipkin_annotations (
            `trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
            `trace_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.trace_id',
            `span_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.id',
            `a_key` VARCHAR(255) NOT NULL COMMENT 'BinaryAnnotation.key or Annotation.value if type == -1',
            `a_value` BLOB COMMENT 'BinaryAnnotation.value(), which must be smaller than 64KB',
            `a_type` INT NOT NULL COMMENT 'BinaryAnnotation.type() or -1 if Annotation',
            `a_timestamp` BIGINT COMMENT 'Used to implement TTL; Annotation.timestamp or zipkin_spans.timestamp',
            `endpoint_ipv4` INT COMMENT 'Null when Binary/Annotation.endpoint is null',
            `endpoint_ipv6` BINARY(16) COMMENT 'Null when Binary/Annotation.endpoint is null, or no IPv6 address',
            `endpoint_port` SMALLINT COMMENT 'Null when Binary/Annotation.endpoint is null',
            `endpoint_service_name` VARCHAR(255) COMMENT 'Null when Binary/Annotation.endpoint is null'
          ) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;
          
          ALTER TABLE zipkin_annotations ADD UNIQUE KEY(`trace_id_high`, `trace_id`, `span_id`, `a_key`, `a_timestamp`) COMMENT 'Ignore insert on duplicate';
          ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`, `span_id`) COMMENT 'for joining with zipkin_spans';
          ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTraces/ByIds';
          ALTER TABLE zipkin_annotations ADD INDEX(`endpoint_service_name`) COMMENT 'for getTraces and getServiceNames';
          ALTER TABLE zipkin_annotations ADD INDEX(`a_type`) COMMENT 'for getTraces and autocomplete values';
          ALTER TABLE zipkin_annotations ADD INDEX(`a_key`) COMMENT 'for getTraces and autocomplete values';
          ALTER TABLE zipkin_annotations ADD INDEX(`trace_id`, `span_id`, `a_key`) COMMENT 'for dependencies job';
          
          CREATE TABLE IF NOT EXISTS zipkin_dependencies (
            `day` DATE NOT NULL,
            `parent` VARCHAR(255) NOT NULL,
            `child` VARCHAR(255) NOT NULL,
            `call_count` BIGINT,
            `error_count` BIGINT,
            PRIMARY KEY (`day`, `parent`, `child`)
          ) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;
      

你可能感兴趣的:(sentinel、sentinel-dashboard使用)