你现在有一个序列 a a a,定义一个用该序列生成新序列 b b b 的规则如下:
比如 a a a = [ 1 , 2 , 3 , 1 , 2 , 3 ] [1,2,3,1,2,3] [1,2,3,1,2,3] ,我们可以把其分成 [ 1 ] \color {red}[1] [1], [ 2 , 3 , 1 ] \color {blue}[2,3,1] [2,3,1], [ 2 , 3 ] \color {green}[2,3] [2,3],长度分别为 1 1 1, 3 3 3, 2 2 2。
然后我们把长度随意插入原序列中,可以得到一个不唯一的 b b b 序列,例如: b = [ 1 , 1 , 3 , 2 , 3 , 1 , 2 , 3 , 2 ] b = [\color {black}{1,}\color {red}1\color {black},3,\color {blue}{2,3,1},\color {black}2,\color {green}{3,2}] b=[1,1,3,2,3,1,2,3,2]。
现在给定一个长度为 n n n ( 1 ≤ n ≤ 2 × 1 0 5 ) (1≤n≤2 \times 10^5) (1≤n≤2×105) 已经操作后的序列 b b b ( 1 ≤ b i ≤ 1 0 9 ) (1\le b_i \le 10^9) (1≤bi≤109),询问你是否能构造出任意一个原序列 a a a,使得它进行如上操作后可以得到 b b b,若能构造出输出 YES
,否则输出 NO
。
共有 t t t ( 1 ≤ t ≤ 1 0 4 ) (1 \le t \le 10^4) (1≤t≤104) 组数据, ∑ n ≤ 2 × 1 0 5 \sum n \le 2 \times 10^5 ∑n≤2×105。
请注意常数可能造成的影响,否则可能会出现 TLE 等评测结果。
The sequence $ a $ is sent over the network as follows:
For example, we needed to send the sequence $ a = [1, 2, 3, 1, 2, 3] $ . Suppose it was split into segments as follows: $ [\color{red}{1}] + [\color{blue}{2, 3, 1}] + [\color{green}{2, 3}] $ . Then we could have the following sequences:
If a different segmentation had been used, the sent sequence might have been different.
The sequence $ b $ is given. Could the sequence $ b $ be sent over the network? In other words, is there such a sequence $ a $ that converting $ a $ to send it over the network could result in a sequence $ b $ ?
The first line of input data contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases.
Each test case consists of two lines.
The first line of the test case contains an integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ) — the size of the sequence $ b $ .
The second line of test case contains $ n $ integers $ b_1, b_2, \dots, b_n $ ( $ 1 \le b_i \le 10^9 $ ) — the sequence $ b $ itself.
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
For each test case print on a separate line:
You can output YES and NO in any case (for example, strings yEs, yes, Yes and YES will be recognized as positive response).
7
9
1 1 2 3 1 3 2 2 3
5
12 1 2 7 5
6
5 7 8 9 10 3
4
4 8 6 2
2
3 1
10
4 6 2 1 9 4 9 3 4 2
1
1
YES
YES
YES
NO
YES
YES
NO
In the first case, the sequence $ b $ could be obtained from the sequence $ a = [1, 2, 3, 1, 2, 3] $ with the following partition: $ [\color{red}{1}] + [\color{blue}{2, 3, 1}] + [\color{green}{2, 3}] $ . The sequence $ b $ : $ [\color{red}{1}, 1, \color{blue}{2, 3, 1}, 3, 2, \color{green}{2, 3}] $ .
In the second case, the sequence $ b $ could be obtained from the sequence $ a = [12, 7, 5] $ with the following partition: $ [\color{red}{12}] + [\color{green}{7, 5}] $ . The sequence $ b $ : $ [\color{red}{12}, 1, 2, \color{green}{7, 5}] $ .
In the third case, the sequence $ b $ could be obtained from the sequence $ a = [7, 8, 9, 10, 3] $ with the following partition: $ [\color{red}{7, 8, 9, 10, 3}] $ . The sequence $ b $ : $ [5, \color{red}{7, 8, 9, 10, 3}] $ .
In the fourth case, there is no sequence $ a $ such that changing $ a $ for transmission over the network could produce a sequence $ b $ .
对于每一个a[i]来说,它可以是上一段的长度,也可以是下一段的长度。
那么就有这两种情况
Case1:这是一个长度标志,放在这段子序列的左边
那么只需要看dp[i-1]是否满足条件,if(dp[i-1]) dp[i+a[i]]=1;
Case2:这是一个长度标志,放在这段子序列的右边
那么只需要看dp[i-a[i]-1]是否满足条件,if(dp[i-a[i]-1]) dp[i]=1;
以样例1为例:
初始化
循环for(int i=1;i<=n;i++)
i=1
i=3
…
#include
#include
using namespace std;
const int N=2e5+10;
int n,a[N];
bool dp[N];
int main()
{
int T;cin>>T;
while(T--)
{
int n;cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
memset(dp,0,sizeof(dp));
dp[0]=1;
for(int i=1;i<=n;i++)
{
//Case1:In the left
if(i+a[i]<=n)
{
if(dp[i-1]) dp[i+a[i]]=1;
}
//Case2:In the right
if(i-a[i]-1>=0)
{
if(dp[i-a[i]-1]) dp[i]=1;
}
}
if(dp[n]) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
}