Springer数学书系列(持续更新)

1 SUMS Springer Undergraduate Mathematics Series

斯普林格大学本科数学系列(SUMS)是为全球数学和科学专业的本科生设计的系列。 从核心基础材料到最后一年的主题,SUMS书籍采用新颖和现代的方法。 文字说明有大量的例子,问题和完善的解决方案,尤其是普遍存在的困难领域。 这些实用而简洁的教科书是针对一两个学期的课程而设计的,但是自学式方法使其成为独立使用的理想选择。

【代数】

  1. Matrix Groups
  2. Codes
  3. Introduction to Lie Algebras
  4. Metric Spaces

【数论】

  1. Elementary Number Theory

【分析】

  1. Analytic Methods for Partial Differential Equations
  2. Calculus of one Variable
  3. Linear Functional Analysis

【几何】

  1. Applied Geometry for Computer Graphics and CAD
  2. Elementary Differential Geometry
  3. Dyperbolic Geometry
  4. Worlds out of Nothing

【拓扑】

【计算】

【统计】

  1. General Relativity

【概率】

  1. Basic Stochastic Process
  2. Measure, Integral and Probability

【组合】

  1. A First Course in Discrette Mathematics

【其他】

  1. Game Theory
  2. Sturm-Lioouville Theory and its applications

2 Undergraduate Texts in Mathematics

数学本科课程介绍了数学的各个子领域。 这些教科书通常针对美国大学的大学三年级和四年级的数学学生,通常为学生和教师提供有关材料的新观点。 即使对于本科课程的标准主题,这些书中的大多数也提供了新颖的方法和见解。 作为有效的教学工具,这些书包括引导读者了解主题的内在联系的动机,展示概念的具体体现的示例以及在各种难度下测试和增强理解的练习。

【代数】

  1. A concrete Introduction to Higher Algebra
  2. A Field Guide to Algebra
  3. An Introduction to Mathematical Cryptography
  4. An Introduction to wavelets through linear algebra
  5. Applied Linear algebra and Matrix analysis
  6. Groups and Symmetry
  7. A concrete introduction to algebraic Curves
  8. Glimpses of Algebra and Geometry
  9. Finite-Dimensional Vector Spaces
  10. Ideals, Varieties, and Algorithms
  11. Integers, polynomials, and rings
  12. Introduction to Boolean Algebras
  13. Introduction to CryptoGraphy
  14. The Joy of Sets
  15. Undergraduate Algebra
  16. Linear Algebra Done Right
  17. Naive Lie Theory
  18. Notes on Set Theory
  19. The Laplace Transfrom: Theory and Applications
  20. Rational Points on Elliptic Curves
  21. linearity symmetry and prediction in the Hydrogen Atom
  22. Elemments of number theory
  23. The Fundamental theorem of algebra

【数论】

  1. Introduction to Analytic Number Theory
  2. Elementary Number Theory
  3. Exercise in Number Theory

【分析】

  1. A Course in Calculus and Real Analysis
  2. A First Course in Calculus
  3. Understanding analysis
  4. Analysis by its history
  5. Complex Analysis
  6. The Lebesguestielgjes Integral
  7. Difference Equations
  8. An Introduction to Difference Equations
  9. Practical Analysis in one variable
  10. Inside Calculus
  11. Introduction to Calculus and classsical Analysis
  12. Elementary Stability and bifurcation Theory
  13. Calculus I II III
  14. Problems and Solutions for undergranduate analysis
  15. Basic elements of real analysis
  16. Real Mathematical Analysis
  17. Beginning Functional Analysis
  18. Second Year Calculus
  19. A Brief on Tensor Analysis
  20. Students Guide to Calculus
  21. Mathematical Methods of Classical Mechanics
  22. Fourier Series
  23. Differential Analysis on Complex Manifolds

【几何】

  1. Elementary Topics in Differential Geometry
  2. Geometry Euclid and beyond
  3. Measure Topology and Fractal Geometry
  4. The Four Pollars of Geometry
  5. Variational Problems in Geometry
  6. Modern Graph Theory

【拓扑】

  1. Basic Topology
  2. Topological and uniform spaces
  3. Topology of Surfaces
  4. Topology

【计算】

  1. Computing the Continuous Discretely

【概率】

  1. Elementary Probability Theory
  2. Discrete Probability
  3. The Pleasures of Probability
  4. Exercises in Probability
  5. Advanced Probalility II

【组合】

  1. Combinatorics and Graph Theory
  2. Discrete Mathematics
  3. Mathematical Masterpieces
  4. Mathematics : A Concise History and Philosophy

【其他】

  1. Mathematical Logic
  2. Reading, Writing, and Proving

3 PBM problem books in mathematics

是Springer出版社以数学习题为主的一系列书籍
内容深刻全面,结果新颖实用,方法精巧简洁,习题丰富多样
值得大家参考

【代数】

  1. A Sequence of Problems on SemiGroups
  2. Functional Equations and How to Solve Them
  3. Problems and Theorems in clssical Set Theory
  4. Pells Equation
  5. Exercises in Classical Ring Theory
  6. An Introduction to Hilbert Space and Quantum Logic

【数论】

  1. Unsolved Problems in Number Theory
  2. Exercises in Number Theory
  3. Fermats Last Theorem

【分析】

  1. Limits, Series, and Fractional Part Integrals
  2. A Problem book in Real Analysis
  3. Principles of Partial Differential Equations
  4. Contests in Higher Mathematics
  5. Problems in Real and Comples Analysis
  6. Exercises in Integration
  7. Probelm book for First Year Calculus
  8. Theorems and Problems in Functional Analysis
  9. Introduction to Oprator Theory
  10. p-adic Numbers p-adic Analysis and Zeta-Functions

【几何】

  1. Analysis and algebra on differentiable Manjifolds
  2. Linear Geometry
  3. A Course in Differential Geometry
  4. Algebraic Geometry
  5. Combinatorics with emphasis on the theory of graphs
  6. Introduction to Knot Theory

【拓扑】

  1. A Cp-Theory Problem Book
  2. Geometric Topology in Dimensions 2 and 3
  3. Algebraic Topologiy

【概率】

  1. Problems in Probability
  2. 40 Puzzles and Problems in Pjrobability and Mathematical Statistics
  3. Probability Theory

【其他】

  1. The IMO Compendium
  2. Berkeley Problems in Mathematics
  3. Problem-Solving Strategies
  4. Problem-Solving through problems
  5. General Relativity for Mathematicians
  6. A Course in Mathematical Logic

4 GTM Graduate Texts in Mathematics

Graduate Texts in Mathematics(GTM)是Springer出版的一个数学基础系列书籍,包括了数学分析、高等代数、复变分析、概率论、随机过程等的数学教材。

4.1【代数】

  1. Introduction to Axiomatic Set Theory
  2. Topological Vector Spaces
  3. A Course in Homological Algebra
  4. Categories for the Working Mathematician
  5. A Course in Arithmetic
  6. Axiomatic Set Theory
  7. Introduction to Lie Algebrtas and Representation Theory
  8. A course in simple Homotopy Theory
  9. Rings and Catregories of Modules
  10. Stable Mappings and Their Singularities
  11. The Structure of Fields
  12. Measure Theory
  13. Fibre Bundles
  14. Linear Algebraic Groups
  15. An Algebraic Introduction to Mathematical Logic
  16. Linear Algebra
  17. Algebraic Theories
  18. Commutative Algebra
  19. Lectures in Abstract Algebra Basic Comcepts
  20. Several Complex Variables and Branach Algebras
  21. Linear Topological Spaces
  22. An Invitation to C-Algebras
  23. Linear Representations of Finite Groups
  24. Rings of Continuous Functions
  25. Cyclotomic Fields
  26. Elements of Homotopy Theory
  27. Fundamentals of the Theory of Groups
  28. Introduction to Affine Group Schemes
  29. Local Fields
  30. Linear Operators in Hilbert Spaces
  31. Singular Homology Theory
  32. Algebra
  33. Basic Theory of Algebraic Group and Lie Algebras
  34. A course in Iniversal Algebra
  35. An Introdunction to Ergodic Theory
  36. A Course in the theory of groups
  37. Introduction to Cyclotomic Fields
  38. Introduction to Coding Theory
  39. Cohomology of Groups
  40. Associative Algebras
  41. Introduction to Algebraic and Abelian Functions
  42. The Geometry of Discrete Groups
  43. Foundations of Differentiable Manifolds and Lie Groups
  44. Introduction to Elliptic Curves and Modular Forms
  45. Representations of Compact Lie Groups
  46. Finite Reflection Groups
  47. Harmonic Analysis on Semigroups
  48. Galois Theory
  49. Lie groups
  50. SL2(R)
  51. The Arithmetic of Elliptic Curves
  52. Applications of Lie Groups to Differential Equations
  53. Elliptic Curves
  54. Elliptic Functions
  55. A Course in Number Theory and Cryptography
  56. Algebraic Groups and Class Fields
  57. Weakly differentiable Functions
  58. Cyclotomic Fields
  59. Linear Algebraic Groups
  60. Representation Theory
  61. A First Course in Noncummutative Rings
  62. Coding and Information Theory
  63. Advanced Linear Algebra
  64. Algebra
  65. Topics in Banach Space Theory
  66. Grobner Bases
  67. Measure Theory
  68. Noncommutative Algebra
  69. Algebraic K- Theory
  70. An Introduction to the theory of Groups
  71. Commutative Algebra
  72. Advanced Topic in the Arithmetic of Elliptic Curves
  73. An Introduction to Analysis
  74. Quantum Groups
  75. Classical Descriptive Set Theory
  76. Field Theory
  77. Groups and Representations
  78. Permutation Groups
  79. Field and Galois Theory
  80. Matrix Analysis
  81. Branach Algebra Techniques in operator Theory
  82. Moduli of Curves
  83. Lectures on Modules and Rings
  84. Basic Homological Algebra
  85. Theory of Bergman Spaces
  86. The Symmetric Group
  87. Galois Theory
  88. Rational Homotopy Theory
  89. A Short Course on Spectral Theory
  90. Number Theory in Function Fields
  91. Algebra
  92. Matrices
  93. Model Theory
  94. An Elementray Introduction to Groups and Representations
  95. Lie groups
  96. Spaces of Holomorphic Functions in the Unit
    Ball
  97. Combinatorial Commutative Algebra
  98. A First Course in Modular Forms
  99. Combinatorics of Coxeter Groups
  100. Topics in Banach Space Theory
  101. Compack Lie Groups
  102. Abstract Algebra
  103. Topological Methods in Group Theory
  104. A Course in Commutative Banach Algebras
  105. Braid Groups
  106. Buildings
  107. The Finite Simple Groups
  108. Algebraic Function Fields and codes
  109. Symmetry Representations and Invariants
  110. A Course in Commutative Algebra
  111. Deformation Theory
  112. Monomial Ideals

4.2 【数论】

  1. Modular Functions and Dirichlet Series in Number Theory
  2. Multiplicative Number Theory
  3. Lectures on the Theory of Algebraic Numbers
  4. A Classical Introduction to Modern Number Theory
  5. Algebraic Number Theory
  6. Numbers
  7. A Course in computiational Algebraic Number Theory
  8. Additive Number Theory
  9. Analytic Number Theory
  10. Fourier Analysis on Number Fields
  11. Problems in Algebraic Number Theory
  12. Advanced Topics in Computational Number Theory
  13. One-Parameter Semigroups for Linear Evlution Equations
  14. Elementrary Methods in Number Theory
  15. An Introduction to Number Theory
  16. Number theory
  17. The Arithmetic of Dynamical Systems
  18. Ergodic Theory

4.3【分析】

  1. Functons of One Complex Variable
  2. Advanced Mathematical Analysis
  3. Lectures in Functional Analysis and Operator Theory
  4. Geometric Functional Analysis and its applications
  5. Real and Abstract Analysis
  6. Several Complex Variables
  7. A Course in Functional Analysis
  8. Complex Analysis
  9. Holomorphic Functions and Integral Representations in Several complex Variables
  10. Measure and Integral
  11. Analysis Now
  12. Theory of Complex Functions
  13. Complex Variables
  14. Partial Differential Equations
  15. Interation of Rational Functions
  16. Optima and Equilibria
  17. Real And Functional Analysis
  18. Functons of One Complex Variable
  19. Polynomials and Polunomial Inquali
  20. Classical Topics in Complex Function Theory
  21. Fundations of Real And Abstract Analysis
  22. Nonsmooth Analysis and Control Theory
  23. Numerical Analysis
  24. Ordinary Differential Equations
  25. Lectures on the Hyperreals
  26. Elements of Functional Analysis
  27. A course in p-adic analysis
  28. Analysis of Applied MAthematics
  29. Partial Differential Equations
  30. Fourier Analysis and its Applications
  31. Bounded Analytic Functions
  32. An Introduction to Operators on the Hardy-Hilbert Space
  33. Complex Analysis
  34. Classical Fourier Analysis
  35. Modern Fourier Analysis
  36. Distributions and Operators
  37. Elementary Functional Analysis
  38. Essentials of Integration Theory for Analysis
  39. Functonal Analysis calculus
  40. Calculus Without Derivatives

4.4【几何】

  1. Projective Planes
  2. A Hilbert Space Problem Book
  3. Elementray Algebraic Geometry
  4. Algebraic Geometry
  5. Lectures on Riemann Surfaces
  6. Sequences and Series in banach Spaces
  7. Modern Geometry I II
  8. Univalent Functions and Teichmuller Spaces
  9. Differential Geometry. Manifolds, curves, and Surfaces
  10. Tensor Geometry
  11. Algebraic Geometry
  12. Foundations of Hyperbolic Manifolds
  13. Lectures on Polytopes
  14. Algebraic Topology
  15. Differential and Riemannian Manifolds
  16. Differential Geometry
  17. Combinatorial Comvexity and Algebraic Geometry
  18. Sheaf Theory
  19. Riemannian Geometry
  20. An Introduction to Knot Theory
  21. Riemannian Manifolds
  22. Using Algebraic Geometry
  23. Fundamentals of Differential Geometry
  24. An Introduction to Riemann-Finsler Geometry
  25. Diophantine Geometry
  26. Lectures on Discrete Geometry
  27. From Holomorphic Functions to Complex Manifolds
  28. Algebraic Functions and Projective Curves
  29. Introduction to smooth manifolds
  30. Smooth Manifolds and Observables
  31. Metric structures in differential geometry
  32. The Geometry of Syzygies
  33. Analysis on Fock Spaces
  34. Unbounded Self-adjoint operators on Hilbert Space

4.5【拓扑】

  1. Measure and Category
  2. General Topology
  3. Differential Topology
  4. Riemann Surfaces
  5. Classical Topology and Combinatorial Group Theory
  6. Differential Forms in Algebraic Topology
  7. An Introduction to Convex Polytopes
  8. An Introduction to Algebraic Topology
  9. A Basic Course in Algebraic Topology
  10. Topology and Geometry
  11. Homology Theory
  12. Graph Theory
  13. A Course On Borel Sets
  14. An Introductijon to Banach Space Theory
  15. Modern Graph Theory
  16. The Geometry of Schemes
  17. Introduction to Topological Manifolds
  18. Algebraic Graph Theory
  19. The Arithmetic of Hyperbolic 3-Man
  20. Graph Theory

4.6【计算】

  1. Fourier Series
  2. Computability
  3. Convex Polytopes

4.7【概率】

  1. Random Processes
  2. Principles of Random Walk
  3. Denumerable Markov Chains
  4. Probability
  5. Brownian Motion and Stochastic Calculus
  6. Integration and Probability
  7. An Introduction to Markov Processes
  8. Analysis and Probability
  9. Probability and Stochastics

4.8【组合】

  1. A Course in Enumeration

4.9【其他】

5 SMM Springer Monographs in Mathematics

该系列出版了高级专着,对数学研究领域中的“最新技术”进行了很好的书写,这些技术已经获得了这种疗法所需的成熟度。 它们具有足够的独立性,不仅可以让该领域的专业人士接触到,而且还具有足够的全面性,可以在许多年内保持有价值的参考。 除了其领域的当前知识状态之外,SMM卷还应该描述其与数学相邻领域的相关性和相互作用,并为未来的研究方向提供指导。 该系列中的各卷均精装。

【代数】

  1. Algebraic Cobordism
  2. Analysis of Toeplitz Operators
  3. Building
  4. Class Field Theory
  5. Complex Semisimple Lie Algebras
  6. Cyclotomic Fields and Zeta Values
  7. Complex Analysis on Infinite Dimensional Spaces
  8. Discrete Spectral Synthesis and its Applications
  9. Elementary and analytic theory of algebraic numbers
  10. Elementary Dirichlet Series and Modular Forms
  11. Find Structures of Hyperbolic Diffeomorphisms
  12. Finite Model Theory
  13. Fractals and Universal Spaces in Dimension Theory
  14. High-dimensional knot theory
  15. Ideals and Reality
  16. Introduction to Singularities and Deformations
  17. Inverse Galois Theory
  18. Lie Algebras and algebraic Groups
  19. Local Algebra
  20. Moduli in Modern Mapping Theory
  21. Perturbations of Positive Semigroups with Applications
  22. Set Theory
  23. The Higher Infinite
  24. Theory of Association Schemes
  25. Topological Invariants of Stratified Spaces
  26. Tree
  27. Twelve Sporadic Groups
  28. Valued Fields
  29. Integral Closure

【数论】

  1. Modular Forms
  2. The Development of Prime Number Theory
  3. The Heat Kernel and Theta Inversion on LS2(C)

【分析】

  1. An Introduction to Echo Analysis
  2. Applied Proof Theory Proof Interpretations and Their Use in Mathematics
  3. Asymptotic Cones and Functions in Optimization and Variational Inequalities
  4. Functonal Analysis in Mechanics
  5. Integral Closure
  6. Methods in Nonlinear Analysis
  7. Modern Methods in the Calculus of Variations : Lp Spaces
  8. NMonsmooth Variational Problems and Their Inequalities
  9. Nonstandard Analysis Axiomatically
  10. Self-dual Partial Differential Systems and Their Variational Principles
  11. Shock Wave Interactions in General Relativity
  12. Stratified Lie Groups and potential Theory for their Sub-Laplacians

【几何】

  1. Convex Polyhedra
  2. Fractal Geometry Complex Dimensions and Zeta Functions
  3. Projective and Cayley-Klein Geometries
  4. Random Fields and Geometry
  5. The Generic Chaining

【拓扑】

  1. Fixed Point Theory

【计算】

  1. Interpolation Processes
  2. Optimization of Elliptic Systems
  3. Variational and potential Methods ofr a class 0f hyperbolic Evolutionary Processes
  4. Vorticity ,statistical Mechanics and Monte Carlo Simulation
  5. Walsh Equiconvergence of Complex Interpolating Polynomials

【概率】

  1. Brownian Motion Obsatcles and Random Media
  2. Multiparameter Processes

【组合】

【其他】

  1. Fourier Series in Control Theory
  2. Interfacial Convection in Multilayer Systems
  3. Nevanlinnas Theory of Value Distribution
  4. Normal Forms and unfoldings for Local Dynamnical Systems
  5. Notes on Coxeter Transformations and the McKay Correspondence
  6. On Thom Spectra Orientablility and Cobordism
    7 Optimization Methods in Electromagnetic Radiation
  7. Reciprocity Laws

你可能感兴趣的:(Springer数学书系列(持续更新))