一、来自链接:http://www.voidcn.com/article/p-qkxqxmdl-but.html
import matplotlib.pyplot as plt import numpy from sklearn.datasets import make_blobs from sklearn.metrics import precision_recall_curve, auc from sklearn.model_selection import KFold from sklearn.svm import SVC FOLDS = 5 X, y = make_blobs(n_samples=1000, n_features=2, centers=2, cluster_std=10.0, random_state=12345) f, axes = plt.subplots(1, 2, figsize=(10, 5)) axes[0].scatter(X[y==0,0], X[y==0,1], color='blue', s=2, label='y=0') axes[0].scatter(X[y!=0,0], X[y!=0,1], color='red', s=2, label='y=1') axes[0].set_xlabel('X[:,0]') axes[0].set_ylabel('X[:,1]') axes[0].legend(loc='lower left', fontsize='small') k_fold = KFold(n_splits=FOLDS, shuffle=True, random_state=12345) predictor = SVC(kernel='linear', C=1.0, probability=True, random_state=12345) y_real = [] y_proba = [] for i, (train_index, test_index) in enumerate(k_fold.split(X)): Xtrain, Xtest = X[train_index], X[test_index] ytrain, ytest = y[train_index], y[test_index] predictor.fit(Xtrain, ytrain) pred_proba = predictor.predict_proba(Xtest) precision, recall, _ = precision_recall_curve(ytest, pred_proba[:,1]) lab = 'Fold %d AUC=%.4f' % (i+1, auc(recall, precision)) axes[1].step(recall, precision, label=lab) y_real.append(ytest) y_proba.append(pred_proba[:,1]) y_real = numpy.concatenate(y_real) y_proba = numpy.concatenate(y_proba) precision, recall, _ = precision_recall_curve(y_real, y_proba) lab = 'Overall AUC=%.4f' % (auc(recall, precision)) axes[1].step(recall, precision, label=lab, lw=2, color='black') axes[1].set_xlabel('Recall') axes[1].set_ylabel('Precision') axes[1].legend(loc='lower left', fontsize='small') f.tight_layout() f.savefig('result.png')
二、来自链接:https://www.programcreek.com/python/example/89259/sklearn.metrics.precision_recall_curve
def precision_recall_auc(loss_file,reverse,smoothing): if not os.path.isdir(loss_file): loss_file_list = [loss_file] else: loss_file_list = os.listdir(loss_file) loss_file_list = [os.path.join(loss_file, sub_loss_file) for sub_loss_file in loss_file_list] optimal_results = RecordResult() for sub_loss_file in loss_file_list: dataset, scores, labels = get_scores_labels(sub_loss_file,reverse,smoothing) precision, recall, thresholds = metrics.precision_recall_curve(labels, scores, pos_label=0) auc = metrics.auc(recall, precision) results = RecordResult(recall, precision, auc, dataset, sub_loss_file) if optimal_results < results: optimal_results = results if os.path.isdir(loss_file): print(results) print('##### optimal result and model PR-AUC = {}'.format(optimal_results)) return optimal_results
三、来自链接:https://github.com/9468305/python-script/tree/master/auc_pr_roc/
'''使用real.csv和result.csv列数据,计算PR曲线的AUC值''' precision, recall, _thresholds = metrics.precision_recall_curve(label, prob) area = metrics.auc(recall, precision) return area