- 《Python数据分析实战终极指南》
xjt921122
python数据分析开发语言
对于分析师来说,大家在学习Python数据分析的路上,多多少少都遇到过很多大坑**,有关于技能和思维的**:Excel已经没办法处理现有的数据量了,应该学Python吗?找了一大堆Python和Pandas的资料来学习,为什么自己动手就懵了?跟着比赛类公开数据分析案例练了很久,为什么当自己面对数据需求还是只会数据处理而没有分析思路?学了对比、细分、聚类分析,也会用PEST、波特五力这类分析法,为啥
- 9.单细胞 RNA-seq:聚类分析
denghb001
学习目标:利用多种方法来评估聚类选择的PC基于重要的PC执行单细胞聚类单细胞RNA-seq聚类分析现在我们已经整合了高质量的细胞,我们想知道我们的细胞群中存在的不同细胞类型。image目标:为了生成特定细胞类型的簇,并使用已知的细胞类型的标志基因来确定的簇的身份。为了确定分群是否代表真实的细胞类型或由于生物或技术差异而形成的群集,如在细胞周期的S期的细胞群,特定批次的簇,或具有高线粒体含量的细胞。
- 聚类分析 | Python密度聚类(DBSCAN)
天天酷科研
聚类分析算法(CLA)python聚类机器学习DBSCAN
密度聚类是一种无需预先指定聚类数量的聚类方法,它依赖于数据点之间的密度关系来自动识别聚类结构。本文中,演示如何使用密度聚类算法,具体是DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)来对一个实际的数据集进行聚类分析。一、基本介绍密度聚类的核心思想是将数据点分为高密度区域和低密度区域。高密度区域内的数据点被认为属于同一簇,而低
- 三国演义python分析系统_Python之三国演义(上)
weixin_40002692
三国演义python分析系统
一、设计实现详细说明1.1任务详细描述以中国四大名著之一——《三国演义》为蓝本,结合python数据分析知识进行本次的文本分析。《三国演义》全书共120回。本次的分析主要基于统计分析、文本挖掘等知识。1.2设计思路详细描述数据准备、数据预处理、分词等全书各个章节的字数、词数、段落等相关方面的关系整体词频和词云的展示全书各个章节进行聚类分析并可视化,主要进行了根据IF-IDF的系统聚类和根据词频的L
- 工信教考 | AI智能体应用工程师(模拟试题)
人工智能-猫猫
人工智能开源自然语言处理语言模型架构
关于AI智能体工程师的模拟试题,下面根据AI智能体工程师所需掌握的知识和技能,设计一些模拟题型的示例。这些题目旨在考察应试者在人工智能、机器学习、深度学习、算法设计、系统开发等方面的能力。一、选择题无监督学习常用于哪些任务?(单选)A.回归分析B.聚类分析C.分类预测D.序列预测答案:B解析:无监督学习常用于聚类、降维、异常检测等任务,如市场分割、数据可视化等。以下哪种激活函数常用于分类问题的输出
- 【车辆轨迹处理】python实现轨迹点的聚类(一)——DBSCAN算法
空之箱大战春日影
车辆轨迹数据处理算法python聚类
文章目录前言一、单辆车轨迹的聚类与分析1.引入库2.聚类3.聚类评价二、整个数据集多辆车聚类1.聚类2.整体评价前言 空间聚类是基于一定的相似性度量对空间大数据集进行分组的过程。空间聚类分析是一种无监督形式的机器学习。通过空间聚类可以从空间数据集中发现隐含的信息。 作者在科研工作中,需要对某些车辆的轨迹数据进行一些空间聚类分析,以期望发现车辆在行驶过程中发生轨迹点”聚集“的行为。当等时间间隔的
- 模糊C-means算法原理及Python实践
doublexiao79
数据分析与挖掘算法python
模糊C-means算法原理及Python实践一、目标函数二、隶属度矩阵和聚类中心三、算法步骤四、终止条件五、算法特点六、Python实现模糊C-means(FuzzyC-Means,简称FCM)算法是一种经典的模糊聚类算法,它在数据分析、数据挖掘、图像处理等多个领域有着广泛的应用。FCM算法通过为每个数据点分配模糊隶属度,将数据点划分到不同的聚类中心,从而实现对数据集的聚类分析。以下是模糊C-me
- 每天一个数据分析题(四百八十七)- 非监督学习
跟着紫枫学姐学CDA
数据分析题库数据分析学习数据挖掘
关于非监督学习,在K-means聚类分析使用的距离是()A.欧式距离B.绝对距离C.Minkowski距离D.笛卡尔距离数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 每天一个数据分析题(四百八十八)- 非监督学习
跟着紫枫学姐学CDA
数据分析题库数据分析学习数据挖掘
关于非监督学习,在K-means聚类分析使用的距离是()A.欧式距离B.绝对距离C.Minkowski距离D.笛卡尔距离数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- ArcGIS热点分析 (Getis-Ord Gi*)——基于地级市尺度的七普人口普查数据的热点与冷点分析
杨超越luckly
ArcGIS日常分享机器学习人工智能数据分析大数据数据挖掘
先了解什么是热点分析?热点分析(Getis-OrdGi*)是一种用于空间数据分析的技术,主要用于识别地理空间数据中值的聚集模式,可以帮助我们理解哪些区域存在高值或低值的聚集,这些聚集通常被称为“热点”或“冷点”,Gi*统计量为数据集中的每个要素(例如地图上的点或区域)计算一个z得分。这个z得分可以用来判断在该位置附近是否存在显著的高值或低值聚集。热点分析(Getis-OrdGi*)和高/低聚类分析
- “利用电子医院记录,针对急性护理环境中的老年人,开发并验证了一项医院脆弱风险评分:一项观察性研究“
ericliu2017
大数据围术期麻醉
总结背景年长者在全球范围内成为医疗保健的增长用户。我们的目标是确定是否可以利用常规收集的数据来识别具有虚弱特征并面临不利健康结果风险的年长者。方法使用三步方法开发和验证了一种医院脆弱风险评分,该评分基于《国际疾病和相关健康问题统计分类第十次修订版》(ICD-10)的诊断编码。首先,我们进行了聚类分析,以识别住院的75岁及以上年龄段的老年人群,其资源利用率高,并且诊断与脆弱有关。第二,我们根据ICD
- SPSSAU【文本分析】|文本聚类
spssau
支持向量机机器学习人工智能
SPSSAU共提供两种文本聚类方式,分别是按词聚类和按行聚类。按词聚类是指将需要分析的关键词进行聚类分析,并且进行可视化展示,即针对关键词进行聚类,此处关键词可以自由选择。按行聚类分析是指针对以‘行’为单位进行聚类分析,将原始文本中多行数据聚为几个类别,并且可将具体聚类类别信息进行下载等。按词聚类分析按词聚类分析操作如下图:默认情况下,系统会将词频靠前的20个关键词提取,并且得到其词向量值,并且其
- MATLAB | 绘图复刻(十五) | 环形聚类树状图
slandarer
matlab聚类开发语言
本期复刻效果:感觉出的聚类分析树状图绘制工具也不少了,未来可能会统一整理为一个工具包?(任重道远,道阻且长):代码讲解0数据设置写了比较多的注释应该比较易懂:clc;clear;closeall%样品起名slan1slan2slan3...slan75sampleName=compose('slan%d',1:75);%随机生成数据%rng(10)Data=rand(75,3);%分类数N=5;%
- 聚类分析入门:使用Python和K-means算法进行数据聚类
Evaporator Core
python
文章标题:聚类分析入门:使用Python和K-means算法进行数据聚类简介聚类分析是机器学习中的一个重要任务,它涉及将数据集中的样本分成多个类别或簇,使得同一簇内的样本相似度较高,不同簇之间的样本相似度较低。K-means算法是一种常用的聚类算法,它通过迭代优化簇的中心点来实现聚类。本文将介绍如何使用Python编程语言和Scikit-learn库实现K-means算法,以及如何对数据进行聚类分
- 多元统计分析课程论文-聚类效果评价
talle2021
数据分析机器学习聚类数据挖掘机器学习
数据集来源:UnsupervisedLearningonCountryData(kaggle.com)代码参考:Clustering:PCA|K-Means-DBSCAN-Hierarchical||Kaggle基于特征合成降维和主成分分析法降维的国家数据集聚类效果评价目录1.特征合成降维2.PCA降维3.K-Means聚类3.1对特征合成降维的数据聚类分析3.2对PCA降维的数据聚类分析摘要:本
- 数据分析方法论和分析法
水调歌头_f072
数据分析方法论:指数据分析思路,用于指导数据分析师进行数据分析。例如:4P、5W2H、逻辑树等分析思路。数据分析法:具体的分析方法。例如交叉分析、相关分析、回归分析、对比分析、聚类分析等。分析工具:EXcel、SPSS、SAS等
- 10.单细胞 RNA-seq:聚类分析
denghb001
学习目标:评估是否存在聚类过程产生的技术误差使用PCA和UMAP图确定聚类质量,并了解何时重新聚类评估已知的细胞类型标记与假设簇的细胞类型同一性单细胞RNA-seq聚类分析现在我们已经进行了整合,我们想知道我们的细胞群中存在哪些不同细胞类型。image目标:*生成特定于细胞类型的簇,并使用已知的标记来确定簇的身份。确定分群是否代表真实的细胞类型或由于生物或技术差异而形成的群集,例如处于细胞周期S期
- 机器学习原理到Python代码实现之K-Means
神仙盼盼
机器学习基于python的算法设计机器学习pythonkmeans
K-Means聚类算法该文章作为机器学习的第四篇文章,主要介绍的是K-Means聚类算法,这是我们介绍的第一个无监督算法,在这里我们将对什么是无监督,为什么要有无监督等也会有一些介绍,算法不难,大家且看且思考。难度系数:⭐更多相关工作请参考:Github算法介绍K-Means算法是一种无监督的聚类分析算法,通过迭代过程将数据划分为K个聚类。该算法以距离作为数据对象间相似度的衡量标准,将数据对象分配
- 《统计学简易速速上手小册》第6章:多变量数据分析(2024 最新版)
江帅帅
《统计学简易速速上手小册》数据分析数据挖掘机器学习统计学概率论web3人工智能
文章目录6.1主成分分析(PCA)6.1.1基础知识6.1.2主要案例:客户细分6.1.3拓展案例1:面部识别6.1.4拓展案例2:基因数据分析6.2聚类分析6.2.1基础知识6.2.2主要案例:市场细分6.2.3拓展案例1:文档聚类6.2.4拓展案例2:基因表达数据的聚类6.3判别分析6.3.1基础知识6.3.2主要案例:信用评分模型6.3.3拓展案例1:市场细分与目标客户识别6.3.4拓展案例
- 聚类分析-R语言
育种数据分析之放飞自我
1,原始数据,是矩阵,有行头和列名:data2,amap包的聚类分析:library(amap)clu<-hclusterpar(matx)plot(clu,sub="",hang=-1,xlab=NA,ylab=NA,main=NA)cluster用法:hcluster(x,method="euclidean",diag=FALSE,upper=FALSE,link="complete",mem
- 聚类分析实验报告
平凡女生的创作
聚类分析在市场细分中的目的是构建细分市场,基本思想是“物以类聚”,辨别事物在某些特征上的相似性或相异性,并按照这些特性将事物划分为几个类别,是在同一类别中的事物有较大的相似性,不同类别中的事物有较大的差异。本文介绍的是聚类分析方法中的非层次聚类法——K-Means聚类法,也称快速聚类法。适用于大样本的聚类分析,可以节省运算时间。该实验的数据来源于上一个因子分析实验的结果(三列FAC)。实验目的实验
- 【机器学习】Kmeans如何选择k值
TwcatL_tree
机器学习人工智能深度学习机器学习kmeans人工智能
确定K值是K-means聚类分析的一个重要步骤。不同的K值可能会产生不同的聚类结果,因此选择合适的K值非常重要。以下是一些常见的方法来选择K值:手肘法:该方法基于绘制聚类内误差平方和(SSE)与K值之间的关系图。随着K值的增加,SSE会逐渐降低,但降低幅度逐渐减小。手肘法的目标就是找到SSE下降的速度开始变慢的“拐点”,这个点就是最佳的K值。轮廓系数法:该方法基于每个数据点与它所属的聚类中心的距离
- 非约束排序1—概述 (数量生态学:R语言的应用第五章)
fafu生信小蘑菇
非约束排序1—概述(数量生态学:R语言的应用第五章)在这之前我们已经学习了聚类分析,聚类分析的目的在于寻找数据的间断性,排序的目的就在于寻找数据的连续性(通过连续的排序轴展示数据的主要趋势)。本章主要内容是对PCA、CA、MCA、PCoA和NMDS等排序方法的学习,如何使用正确的参数选项运行这些排序分析的函数以及如何正确解读排序图。1.排序的概念排序的过程是将样方或植物种排列在一定的空间,使得排序
- 挖掘建模概述
三块给你买麻糬_31c3
1、概述1.1数据挖掘的基本任务基本任务包括分类与预测、聚类分析、关联规则、时序模式、偏差检测、智能推荐等方法,通过完成这些任务,发现数据的价值,指导商业抉择,带来商业新价值。1.2数据挖掘建模过程1.2.1定义挖掘目标一般可以分为三类:把握趋势和模式、预测或分类、求最优解1.2.2数据取样常见的抽样方法包括:随机抽样、等距抽样、分层抽样、顺序抽样、分类抽样1.2.3数据探索这一步考虑的是数据集的
- 机器学习——分级聚类法介绍及其Python实现
AI小小白
聚类算法人工智能机器学习聚类算法
目录聚类分析概念1.1为什么聚类1.2聚类到底是什么1.3聚类与分类区别1.4相似性与距离聚类1.5相似性的测度特征相似度测度与聚类准则2.1特征相似度测度2.2聚类准则分级聚类法聚类分析概念1.1为什么聚类之所以要聚类,是因为当今的数据量剧增(数据爆炸),导致我们检索信息时成本增加。如果可以找到一种计数可以自动分析数据,那么将有效节约资源。1.2聚类到底是什么聚类定义:给定一组无标签样本,按照各
- 新媒体与传媒行业数据分析实践:从网络爬虫到文本挖掘的综合应用,以“中国文化“为主题
八块腹肌的小胖
数据分析python
大家好,我是八块腹肌的小胖,下面将围绕微博“中国文化”以数据分析、数据处理、建模及可视化等操作目录1、数据获取2、数据处理3、词频统计及词云展示4、文本聚类分析5、文本情感倾向性分析6、情感倾向演化分析7、总结1、数据获取本任务以新浪微博为目标网站,爬取“中国文化”为主题的微博数据进行数据预处理、数据可视化等操作。目标网站如图1所示:图1微博网站及分析通过分析微博网站,使用爬虫获取代码,爬虫核心伪
- 【机器学习】AAAI 会议论文聚类分析
住在天上的云
机器学习机器学习人工智能
实验五:AAAI会议论文聚类分析本次实验以AAAI2014会议论文数据为基础,要求实现或调用无监督聚类算法,了解聚类方法。1任务介绍每年国际上召开的大大小小学术会议不计其数,发表了非常多的论文。在计算机领域的一些大型学术会议上,一次就可以发表涉及各个方向的几百篇论文。按论文的主题、内容进行聚类,有助于人们高效地查找和获得所需要的论文。本案例数据来源于AAAI2014上发表的约400篇文章,由UCI
- 聚类算法理论
是鱼儿啊~
机器学习机器学习聚类算法
目录原理与用途常见的聚类方式聚类中需要注意的问题:常见算法以及应用k-均值聚类k-均值聚类过程该算法的特点算法参数介绍聚类分析的应用案例层次聚类层次聚类的过程算法特点参数介绍层次聚类的应用小案例特征聚类原理与用途聚类是一种无监督学习算法,聚类的过程是一个见李假设的过程,使用聚类之后还需要总结每一类别的基本热证,从而更加清晰了解问题的实质。目的:分类,一个类别的个体具有尽可能高的同质性,类别之间具有
- 聚类分析的相关理论
Merry_hj
群智能算法
随着数据对我们当今生产生活的影响不断加深,数据挖掘开始成为了人们更加深入了事物本质的重要方法,聚类分析作为一项十分重要的数据挖掘手段,是使用某种相似度度量方法将数据集分为组内尽可能相似,组间尽可能相异的分组,最终使聚类结果达到规定的评价准则的要求的过程。其中最具代表意义的算法为K-means算法,因其简单的原理和较好的聚类效果被应用于诸多领域。样本相似度的度量方法为了将数据集中的样本分为类内相似,
- python.实战-聚类建模分析
chfing
########################################二维及数据标准化展示###############################################34.1聚类分析导入库importnumpyasnp#导入numpy库importpandasaspdimportmatplotlib.pyplotasplt#导入matplotlib库fromsklear
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本