- SMT焊接常见的工艺缺陷
沙滩小绵羊
嵌入式硬件
本来介绍了常见的工艺缺陷。一.贴片式元器件竖立原理:元器件两端的湿润力不平衡,引发了元器件两端的力矩不平衡,从而导致与激情发生竖立。问题1:1.元器件的两边焊盘之一与地线连接或者有一侧的焊盘面积过大,使得在回流焊时两端热容量不均。2.PCB表面各处的温差过大导致两边的焊盘吸热不均匀。3.大型器件、散热器周围的小型贴片式元器件焊盘两端会出现温度不均匀。解决办法:调整焊盘的设计与整体的布局。问题2:焊
- .net 4.0环境异步方法实现,异步委托和回调异常处理
蔚蓝星空-大强
异步多线程c#asp.net
.net4.0环境异步方法实现,异步委托和回调异常处理无返回值的异步方法通过委托实现staticvoidMain(string[]args){//异步执行写入数据任务,不阻塞主线程任务SetDataAsync(1);Console.WriteLine("主线程后续任务...");Console.ReadKey();}publicstaticvoidSetDataAsync(intnum){//这里
- 零基础入门机器学习:用Scikit-learn实现鸢尾花分类
藍海琴泉
机器学习scikit-learn分类
适合人群:机器学习新手|数据分析爱好者|需快速展示案例的学生一、引言:为什么要学这个案例?目的:明确机器学习解决什么问题,建立学习信心。机器学习定义:让计算机从数据中自动学习规律(如分类鸢尾花品种)。为什么选鸢尾花数据集:数据量小、特征明确,适合教学演示。Scikit-learn优势:提供现成算法和工具,无需从头写数学公式。二、环境准备:5分钟快速上手目的:搭建可运行的代码环境,避免卡在工具安装环
- 小白学AI量化:DeepSeek+Python构建强大的金融数据挖掘与多维分析机器人
老余捞鱼
AI顾投高级策略AI探讨与学习人工智能python金融deepseek
作者:老余捞鱼原创不易,转载请标明出处及原作者。写在前面的话:在机构主导的量化交易时代,普通投资者如何用一杯奶茶的钱(15元/天)打造专业级智能量化产品?本文将为您揭秘一个革命性的解决方案——基于国产大模型DeepSeek和Python构建的智能数据挖掘分析机器人。它不仅适用于通用网页数据抓取,更能深度应用于金融领域,精准捕捉市场信号。本文“干货”很多,请务必耐心读完。一、颠覆认知的性价比革命1.
- Bash 脚本基础
HXQ_晴天
linuxbashchrome开发语言
一、Bash脚本基础什么是Bash脚本:Bash脚本是一种文本文件,其中包含了一系列的命令,这些命令可以被Bashshell执行。它用于自动化重复性的任务,提高工作效率。Bash脚本的基本结构:以#!/bin/bash开头,表示使用Bash解释器来执行脚本。接下来是具体的命令和操作。二、编写和运行第一个Bash脚本创建脚本文件:使用命令nanohello.sh创建名为hello.sh的文件。编写脚
- python processpoolexecutor_Python多进程解决方案multiprocessing ProcessPoolExecutor
weixin_39599046
python
大多数编程语言都会有多线程和多进程的概念,至于线程和进程的概念,大家可以百度一下。作为一门胶水语言,Python毫不意外,也可以利用多线程和多进程处理并发问题,但是多线程由于GIL的存在,起作用范围大打折扣,仅限于在IO等场景可以发挥点作用。所以,今天要跟大家分享的是Python多进程方案,更好地利用系统多核,从而提升性能。基础方案一:利用Process新建一个子进程,在子进程执行任务。我们写一个
- python processpoolexecutor_Python线程和进程池并行编程
三千香蕉三千
python
Python3.2版本之后发布了concurrent.futures模块,用以支持和管理并发编程,内容涵盖了进程和线程池(ThreadandProcessPooling)、非确定性执行流(NondeterministicExecutionFlows)以及进程和线程同步。本文通过将带有可选参数的任务提交(Submit)给执行器(Executor)来实例化futures对象。执行器是线程或者进程执行池
- python 底层原理processpoolexecutor_Python 并发编程:PoolExecutor 篇
风投小虾
python
个人笔记,如有疏漏,还请指正。使用多线程(threading)和多进程(multiprocessing)完成常规的并发需求,在启动的时候start、join等步骤不能省,复杂的需要还要用1-2个队列。随着需求越来越复杂,如果没有良好的设计和抽象这部分的功能层次,代码量越多调试的难度就越大。对于需要并发执行、但是对实时性要求不高的任务,我们可以使用concurrent.futures包中的PoolE
- 机器学习实战 第一章 机器学习基础
LuoY、
MachineLearning机器学习算法人工智能
第一章机器学习1.1何谓机器学习1.2关键术语1.3机器学习的主要任务1.4如何选择合适的算法1.5开发机器学习应用程序的步骤1.6Python语言的优势1.1何谓机器学习 1、简单地说,机器学习就是把无序的数据转换成有用的信息; 2、机器学习能让我们自数据集中受启发,我们会利用计算机来彰显数据背后的真实含义; 3、机器学习横跨计算机科学、工程技术和统计学等多个学科,需要多学科的
- COMP 315: Cloud Computing for E-Commerce
W_X_99515681
开发语言
Assignment1:JavascriptCOMP315:CloudComputingforE-CommerceFebruary20251IntroductionAcommontaskwhenbackendprogrammingisdatacleaning,whichistheprocessoftakinganinitialdatasetthatmaycontainerroneousorinco
- 【机器学习】朴素贝叶斯入门:从零到垃圾邮件过滤实战
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能朴素贝叶斯深度学习pytorchsklearn开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Python 高手编程系列一千七百零八:在事件循环中使用 executors
杨琴1
python开发语言
Executor.submit()方法返回的Future类实例在概念上非常接近异步编程中使用的协程。这就是为什么我们可以使用执行器在协同多任务和多进程或多线程之间进行混合。此解决方法的核心是事件循环类的BaseEventLoop.run_in_executor(executor,func,*args)方法。它会在进程池或线程池中调度执行由executor参数表示的func函数。这个方法最重要的是它
- When Large Language Models Meet Speech: A Survey on Integration Approaches
UnknownBody
LLMDailySurveyPaper语言模型人工智能自然语言处理
主要内容研究背景:大语言模型(LLMs)在自然语言处理领域取得显著进展,其与语音的融合具有广泛应用前景,但缺乏相关集成方法的综述。文章将语音与LLMs集成方法分为基于文本、基于潜在表示和基于音频令牌三大类。集成方法基于文本的集成:通过级联集成、LLM重打分和LLM生成式错误纠正等方式,利用文本作为LLMs的输入和输出,处理语音相关任务,但存在信息损失和准确性与多样性平衡的问题。基于潜在表示的集成:
- 大模型学习终极指南:从新手到专家的必经之路,全网最详尽解析,你敢挑战吗?
大模型入门教程
学习人工智能AI大模型大模型学习大模型教程AI大模型
随着人工智能技术的飞速发展,大模型(Large-ScaleModels)已经成为推动自然语言处理(NLP)、计算机视觉(CV)等领域进步的关键因素。本文将为您详细介绍从零开始学习大模型直至成为专家的全过程,包括所需掌握的知识点、学习资源以及实践建议等。无论您是初学者还是有一定基础的专业人士,都能从中获得有价值的指导。一、基础知识准备在开始学习大模型之前,需要先掌握一些基础知识,这些知识将为后续的学
- 编程内容简述!
恶霸不委屈
开发语言青少年编程汇编javapython
编程是指通过计算机语言来开发软件、程序和应用的过程,通常通过编写一系列的指令,来让计算机完成特定的任务。编程可以涉及多个领域和技术,以下是一些主要的编程内容:1.编程语言编程语言是程序员与计算机进行沟通的桥梁,不同的编程语言适用于不同的任务。常见的编程语言有:Python:简单易学,适用于数据分析、人工智能、网页开发等。JavaScript:网页开发中不可或缺的语言,用于动态网页和前端开发。Jav
- 《Solidity智能合约开发:从零到一实战指南》大纲
白马区块Crypto100
智能合约
为什么要学Solidity智能合约?在过去几年,区块链从一种“投机工具”进化为一种全新的技术基础设施。无论是NFT、DeFi、GameFi还是DAO,它们的核心都是——智能合约。✨什么是智能合约?智能合约是运行在区块链上的“自动执行程序”,不用依赖中介或第三方,信任直接写进代码里。而Solidity是智能合约开发的“通用语言”。为什么要做这个专栏?做区块链项目的人越来越多,但真正从零系统学习Sol
- 大模型Agent 和 RAG 的关系
大数据追光猿
大模型语言模型人工智能学习方法transformer
Agent和RAG(Retrieval-AugmentedGeneration)是两种在自然语言处理(NLP)和人工智能领域中广泛使用的技术,它们在功能、目标和实现方式上既有区别又有联系。以下是它们的关系及其协同作用的详细分析。1.Agent和RAG的定义(1)Agent定义:Agent是一种智能体,能够感知环境并采取行动以完成特定任务。在NLP领域,Agent通常指一个基于大语言模型(LLM)的
- Unity编辑器扩展快速回顾
托塔1
Unity知识快速回顾unity编辑器游戏引擎
知识点来源:总结人间自有韬哥在,唐老狮,豆包目录1.自定义菜单栏拓展1.1.Editor文件夹用途1.2.添加自定义页签1.3.Component菜单加脚本1.4.Inspector脚本右键菜单1.5.快捷键设置2.自定义窗口扩展2.1.创建窗口类2.2显示窗口2.3.窗口事件回调函数2.4.窗口中常用的生命周期函数2.5.编辑器窗口类中的常用成员3.EditorGUI3.1.EditorWind
- SpringBoot集成Flink-CDC,实现对数据库数据的监听
rkmhr_sef
面试学习路线阿里巴巴springbootflink数据库
一、什么是CDC?CDC是ChangeDataCapture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。二、Flink-CDC是什么?CDCConnectorsforApacheFlink是一组用于ApacheFlink的源连接器,使用变更数据捕获(CDC)从
- HarmonyOS Next 企业级移动办公应用构建
SameX-4869
harmonyos华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)在企业级移动办公应用构建中的应用,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。第一章:应用场景与架构规划一、常见应用场景及要求任务管理在企业办公中,任务管理是核心场景之一。员工需要能够创建任务,详细描述任务
- 大数据技术实战---项目中遇到的问题及项目经验
一个“不专业”的阿凡
大数据
问题导读:1、项目中遇到过哪些问题?2、Kafka消息数据积压,Kafka消费能力不足怎么处理?3、Sqoop数据导出一致性问题?4、整体项目框架如何设计?项目中遇到过哪些问题7.1Hadoop宕机(1)如果MR造成系统宕机。此时要控制Yarn同时运行的任务数,和每个任务申请的最大内存。调整参数:yarn.scheduler.maximum-allocation-mb(单个任务可申请的最多物理内存
- 深入解析Flink Kafka Connector的分布式流数据采集架构与底层实现
数据与算法架构提升之路
#Flinkflinkkafkaconector源码
目录1.FlinkKafka连接器的分布式流采集架构1.1架构组成1.2分布式流模型2.数据分区分配策略3.为什么重写序列化和偏移量管理3.1与Flink分布式架构集成3.2与Flink检查点机制集成同时承接多级并行架构3.3OffsetsInitializer与细粒度偏移量控制3.4与Flink的Source接口统一4.版本兼容性管理5.有界流处理支持5.1实现原理5.2API使用示例5.3多种
- Agent、RAG、LangChain的概念及作用
北极冰雨
大模型人工智能
Agent:概念:在人工智能中,Agent通常指的是能够执行任务或做出决策的实体,可以是简单的程序,也可以是复杂的系统,如自动化客服助手、推荐系统等,甚至可以是软件代理、机器人或虚拟助手等各种形式。作用:它能利用内置的大语言模型来做出规划,决定执行哪些步骤,以及每个步骤需要调用哪些工具(如RAG),之后调用相应的工具,最终完成任务。例如,在客服问答场景中,Agent可以根据用户的问题,规划出需要查
- A800核心加速技术深度剖析
智能计算研究中心
其他
内容概要作为第三代异构计算架构的典型代表,A800通过深度融合通用计算单元与专用加速模块,构建了高度灵活的资源调度体系。其核心突破在于将矩阵运算、并行任务分发与内存访问路径进行系统性重构,解决了传统架构中计算密度与能效失衡的行业痛点。通过实测数据显示,在典型AI训练场景下,A800相较于前代架构实现了3.2倍的吞吐量提升,同时单位功耗下的指令执行效率优化达47%。技术维度第二代架构A800架构提升
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- H800能效架构实战解析
智能计算研究中心
其他
内容概要H800能效架构以异构计算资源调度与动态功耗控制为核心,通过系统级协同设计实现算力密度与能耗优化的双重目标。其核心技术覆盖智能负载分配、电压频率动态调节及热管理三大模块,形成从芯片级到数据中心级的垂直优化链路。在架构设计中,异构资源调度算法通过实时分析任务特征与硬件状态,动态分配CPU、GPU及专用加速器资源,最大化硬件利用率;动态功耗模块则基于负载波动自适应调整供电策略,结合多级电压频率
- DeepSeek多语言AI高效应用实践
智能计算研究中心
其他
内容概要在人工智能技术快速迭代的背景下,DeepSeek系列模型凭借混合专家架构(MoE)与670亿参数规模,在多语言处理、视觉语言理解及复杂任务生成领域实现了突破性进展。本文系统性拆解其技术架构设计逻辑,聚焦论文写作、代码生成、SEO关键词拓展三大核心场景,分析模型在高生成质量、低使用成本维度的差异化优势。技术维度DeepSeekProver传统单模态模型多语言支持97种语言动态切换单一语种优化
- 算力网协同创新与多场景应用实践
智能计算研究中心
其他
内容概要算力网协同创新正通过技术融合与场景适配,驱动算力资源的高效整合与跨域调度。核心突破方向涵盖异构计算架构优化、边缘计算实时响应能力提升,以及智能算力在工业互联网、数字孪生等场景的动态供给。随着“东数西算”工程推进,算力网络需兼顾性能与可持续性,在芯片制程优化、模型压缩算法及能耗管理等领域形成技术闭环。技术方向应用场景关键指标异构计算架构工业检测任务延迟<10ms模型压缩算法医疗影像分析计算资
- macOS Sequoia 15.0
小洋学长
经验分享
macOSSequoia推出了一系列新功能,可助你在Mac上提高生产力和创造力。通过最新连续互通功能iPhone镜像,你可以在Mac上访问整个iPhone。轻松平铺窗口快速打造理想工作空间,还可查看通过演讲者前置演示时即将共享的内容。经过重大更新的Safari浏览器带来了干扰控制,可让你在浏览网页的同时轻松完成各种任务。macOSSequoia还为“信息”带来了文字效果和表情符号点回,为“计算器”
- 重要重要!!fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵概率论线性代数windows微信机器学习
fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义Fisher信息矩阵(FisherInformationMatrix,FIM)用于衡量模型参数估计的不确定性,其计算和更新在统计学、机器学习和优化中具有重要作用。以下是其计算和更新的关键步骤:一、Fisher矩阵的计算定义Fisher矩阵的元素表示对数似然函数关于参数的二阶导数的期望值的负数,即:Fi,j=−
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不