- 简介 AMD zen 系列 cpu zen zen+ zen2 zen3 zen4 特性
Eloudy
CPUZEN
zen系列cpu,几代之间,指令集又什么区别?AMD的Zen系列CPU在不同代之间引入了多种指令集扩展和架构改进。以下是各代之间的主要指令集和功能差异:1.Zen(第一代)指令集:支持x86-64指令集,包括SSE、SSE2、SSE3、SSE4.1、SSE4.2、AVX和AVX2。特点:引入了新的微架构设计,显著提升了多线程性能。支持SMT(SimultaneousMultithreading),
- 图的基本操作【严蔚敏】
MooMLu
数据结构与算法数据结构与算法图的基本操作
图的基本操作:ADTGraph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。数据关系R:R={VR}VR={|v,w∈V且P(v,w),表示从v到w的弧,谓词P(v,w)定义了弧的意义或信息}基本操作:CreateGraph(&G,V,VR)初始条件:V是图的顶点集,VR是图中弧的集合。操作结果:按V和VR的定义构造图G。DestroyGraph(&G)初始条件:图G存在。操作结果:
- 【python Pandas】读取与存储hdf5文件
人才程序员
杂谈pythonpandas开发语言python3.11目标检测机器学习深度学习
文章目录Pandas读取与存储HDF5文件1.HDF5文件简介通俗的介绍:学术概念:2.读取HDF5文件2.1读取简单的HDF5文件2.2读取多个数据集2.3使用过滤条件读取数据2.4读取HDF5文件的所有数据集3.存储HDF5文件3.1存储简单的`DataFrame`到HDF5文件3.2追加数据到已有的HDF5文件3.3存储多个数据集3.4使用压缩存储数据3.5存储时不存储索引4.总结Panda
- 零基础入门机器学习 -- 第二章机器学习的基本流程
山海青风
#机器学习机器学习python人工智能
1.机器学习的五个基本步骤在机器学习项目中,我们通常遵循以下步骤:收集数据:获取数据集,例如从文件、数据库或在线资源。清洗和预处理数据:处理缺失值、去除异常数据、转换数据格式等。选择合适的模型:不同任务适合不同模型,如分类使用逻辑回归、决策树等。训练模型:让模型从数据中学习模式并调整参数。评估模型:检查模型的准确率,以判断效果是否良好。本章会通过电影评分预测的示例,帮助你快速体验从数据到模型的基本
- ESP8266 使用步骤
官子无敌刘小路
单片机
ESP8266:1:小型32位型MCU(超低功耗)2:8266通过STA链接路由器3:AP模式即8266自己建立一个网络4:可以STA与AP同时开启。5:串口I2C等功能都有6:型号ESP-01S7:波特率:115200bis/s7:AT指令:具体可看官网(安信可)指令集与使用实例。8网络助手测试1)可以建立客户端或服务端(要关闭WINDOWS防火墙)9使用:1):配置WIFI模式AT+CWMDO
- COCO数据集
是小果果蛋儿啊
机器学习算法计算机视觉人工智能深度学习
官网地址:http://cocodataset.org/#downloadCOCO是一个大规模的物体检测、分割和描述数据集。COCO具有以下特点:物体分割上下文识别超像素材质分割33万张图片(超过20万张有标注)150万个物体实例80个物体类别91个材质类别每张图片有5个描述25万人的关键点COCO数据集是一个多用途的计算机视觉数据集,它支持多种任务,包括但不限于:物体检测(ObjectDetec
- 【语义分割专题文章】
BoostingIsm
Segmentationpython
本栏聚焦在语义分割的相关算法,专栏内文章的代码均已实现。一、数据篇【遥感】【道路】篇:【语义分割】【专题系列】一、MassachusettsRoadsDataset马萨诸塞州道路数据集获取二、CNN篇Unet(2015):【语义分割】【专题系列】二、Unet语义分割代码实战PSPNet(2017):【语义分割】【专题系列】三、PSPNet语义分割代码实战Linknet(2017)FPN(Featu
- 重磅:中国开源首个百万级机器人数据集,具身智能迎来ImageNet时刻
吴脑的键客
机器人技术机器人人工智能数据挖掘
智元机器人携手上海人工智能实验室等机构,重磅发布AgiBotWorld数据集,这是全球首个基于真实场景的百万级机器人数据集。相较谷歌的OpenX-Embodiment,其长程数据规模提升10倍,场景覆盖扩大100倍,数据质量达到工业级标准。这个被誉为具身智能领域"ImageNet时刻"的开源项目展现了令人惊叹的机器人能力。从客厅插花到厨房做饭,从超市收银到工厂分拣,AgiBotWorld涵盖了家居
- 2025年实体店破局新方案,碰一碰发视频高效做营销
hy14762_
用户运营流量运营新媒体运营
近几年,做实体的老板普遍都面临着“高额房租人工成本、传统促销效果差、线上流量难获取”这三大困境,以及"传单发完变垃圾""打折伤利润""会员没人用"的恶性循环。目前集星云推推出的"碰一碰"短视频裂变方案,完善解决了这些难题。NFC技术让宣传变得更简单通过手机NFC近场通讯技术,顾客只需轻碰店内碰一碰卡片,即可一键发布商家短视频。在后台上传50个素材视频,系统能智能生成500+条高度原创的短视频内容,
- 如何避免交叉验证中的数据泄露?
奋进小青
人工智能深度学习机器学习
大家好,我是小青在机器学习中,交叉验证(Cross-Validation)是一种常用的模型评估技术,目的是通过将数据集分割为多个子集,反复训练和验证模型,以便更好地估计模型的性能。然而,在交叉验证过程中,数据泄露(DataLeakage)是一个非常严重的问题,它会导致模型的评估结果过于乐观,进而使得模型在实际应用中表现不佳。什么是数据泄露数据泄露是指在模型训练过程中,模型不恰当地接触到了与验证集或
- 深度学习-情感分析
小赖同学啊
人工智能深度学习人工智能
以下将分别使用PyTorch和TensorFlow框架实现基于深度学习的情感分析,这里以影评的情感分析为例,数据集使用IMDB影评数据集。使用PyTorch实现1.安装必要的库pipinstalltorchtorchtextspacypython-mspacydownloaden_core_web_sm2.代码实现importtorchimporttorch.nnasnnimporttorch.o
- R-CNN架构
人工智能
R-CNN架构架构RCCN由三个模块组成:第一个模块生成与类别无关的区域提议。这些提议定义了我们的检测器可用的候选检测集。第二个模块是一个大型卷积神经网络,它从每个区域中提取固定长度的特征向量。第三个模块是一组特定类别的线性支持向量机(SVM)。虽然R-CNN对特定的区域提议方法不挑剔,但选择性搜索(Selectivesearch)是最常用的方法,以便与之前的检测工作进行有对照的比较。实现在测试时
- 从零开始构建一个大语言模型-第七章第一节
释迦呼呼
从零开始构建一个大语言模型语言模型人工智能自然语言处理机器学习transformer
第七章目录7.1指令微调简介7.2为有监督的指令微调准备数据集7.3将数据整理成训练批次7.4为指令数据集创建数据加载器7.5加载预训练的大语言模型7.6在指令数据上对大语言模型进行微调7.7提取并保存回复7.8评估微调后的大语言模型7.9结论本章内容涵盖大语言模型的指令微调过程准备用于有监督指令微调的数据集将指令数据整理成训练批次提取大语言模型生成的指令响应以供评估此前,我们实现了大语言模型(L
- Java高级特性(基础知识点总结)
杰—
java
文章目录第三章:java高级API1️⃣什么是集合面试题:集合分为2个顶级接口:分别为Collection和Map面试题面试题2:面试题3Map接口:HashMap的数据结构面试题:面试题面试题包装类:JavaApi输入流和输出流会使用File类操作文件或目录File类的构造方法IO流的分类4大顶级抽象父类字符集基础知识:字节输出流写数据的步骤流的关闭与刷新第三章:java高级API1️⃣什么是集
- Dav_笔记12:Automatic SQL Tuning 之 3 SQL-Tuning
Dav_2099
Oracle优化系列笔记sql数据库oracle
使用SQLTuningAdvisor进行无限调优您可以手动调用SQLTuningAdvisor以按需调整一个或多个SQL语句。要调整多个语句,必须创建SQL调优集(STS)。SQL调优集是一个数据库对象,它存储SQL语句及其执行上下文。您可以使用命令行API或企业管理器创建SQL调优集。请参见“Dav_笔记12:AutomaticSQLTuning之4管理SQL调优集”。输入源SQLTuningA
- 高等代数复习:线性空间
爱吃白饭
高等代数线性代数学习笔记
文章目录线性空间定义和性质线性相关性与秩基与维数矩阵的秩同构坐标子空间子空间的定义和性质子空间的和与交直和陪集和商空间解线性方程组本篇文章适合个人复习翻阅,不建议新手入门使用线性空间定义和性质定义:(线性空间)设集合VVV和数域K\mathbb{K}K,在VVV上定义加法+:V×V→V,(α,β)↦α+β+:V\timesV\toV,(\alpha,\beta)\mapsto\alpha+\bet
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 模型应用管理的成功之道:策略、工具与团队协作
项目管理工具
管理模型应用涉及多个方面,包括模型的开发、部署、监控、优化和维护。以下是管理模型应用的关键步骤和策略:1.模型开发●需求分析:明确业务需求,确定模型的目标和评估指标。●数据准备:收集、清洗和预处理数据,确保数据质量。●模型选择:根据问题类型选择合适的算法和模型架构。●训练与验证:使用训练数据训练模型,并通过验证集评估模型性能。●超参数调优:通过交叉验证、网格搜索等方法优化模型超参数。2.模型部署●
- 使用亚马逊针对 PyTorch 和 MinIO 的 S3 连接器进行模型检查点处理
MinIO分布式存储
分布式存储MinIOpytorch百度云人工智能
2023年11月,Amazon宣布推出适用于PyTorch的S3连接器。适用于PyTorch的AmazonS3连接器提供了专为S3对象存储构建的PyTorch数据集基元(数据集和数据加载器)的实现。它支持用于随机数据访问模式的地图样式数据集和用于流式处理顺序数据访问模式的可迭代样式数据集。适用于PyTorch的S3连接器还包括一个检查点接口,用于将检查点直接保存和加载到S3存储桶,而无需先保存到本
- JVS-智能BI一键导入导出,轻松实现数据共享和无缝迁移
数据分析大数据数据迁移bi
在数字化时代,数据在不断增长,复杂性也在提升。在实际应用中,数据的导入导出应用非常广泛,可以帮助企业实现数据的迁移和共享。例如,在系统迁移或升级时,用户可以通过导出功能将现有数据导出为文件格式,并在新系统中重新导入这些数据,从而实现无缝切换。在JVS-智能BI系统中,提供了导入导出功能,接下来我结合使用场景详细说一说导入导出功能的使用。功能介绍与使用场景图表、报表、大屏、数据集、数据源新增导入导出
- Kivy教程大全之 使用 NumPy 和 Kivy 对 Android 设备进行图像分类
知识大胖
Python源码大全pythonkivynumpy
文章简介ANN架构。使用KV语言创建小部件树。创建Kivy应用程序。使用正确的NumPy版本。构建Android应用程序。了解更多信息本教程的重点是构建一个调用预训练的ANN来对图像进行分类的Android应用程序。这里不深入讨论准备数据集、构建、训练和优化ANN的步骤。在本教程中将仅对它们进行简要讨论。但不要担心——在不了解这些细节的情况下遵循本教程中的想法是可以的。如果您想了解它们,请查看我之
- Adobe软件全家桶:从平面到视频再到音频的创意之旅
垚哥说
平面音视频uiadobe
在创意设计的广阔天地里,Adobe公司旗下的系列软件无疑是设计师们手中的魔法棒,它们串联起平面设计、视频剪辑直至音频处理的每一个环节,成为跨越视觉创意门槛的必备工具集。本文将深入浅出地介绍这些软件的应用场景、特色功能及其相互间的协作关系,助力您在创意道路上畅通无阻。AdobePhotoshop(PS)-图像处理大师作为Adobe的明星产品,Photoshop几乎是图像处理的代名词。它擅长处理像素构
- 100.13 AI量化面试题:支持向量机(SVM)如何处理高维和复杂数据集?
AI量金术师
金融资产组合模型进化论支持向量机人工智能算法金融python机器学习数学建模
目录0.承前1.解题思路1.1基础概念维度1.2技术实现维度1.3实践应用维度2.核函数实现2.1基础核函数2.2自定义核函数3.特征处理与优化3.1特征工程3.2参数优化4.实践应用策略4.1核函数选择指南4.2性能优化策略5.回答话术0.承前本文通过通俗易懂的方式介绍支持向量机(SVM)如何处理高维和复杂数据集,包括核函数技巧、特征工程和优化方法。如果想更加全面清晰地了解金融资产组合模型进化论
- 【Python自动化测试25】接口自动化测试实战五_数据库断言、接口关联及相关管理优化
萌笑天
Python自动化测试python自动化开发语言自动化测试软件测试
文章目录一、前言二、校验数据库、接口关联及项目优化一、前言 本文章主要会讲解接口自动化测试中Python的数据库断言以及相关的接口关联的测试,除此之外下方有系列文章的传送门,还在持续更新中,感兴趣的小伙伴也可以前往查看,话不多说,让我们一起看看吧~系列文章: 系列文章1:【Python自动化测试1】遇见Python之美 系列文章2:【Python自动化测试2】Python安装配置及PyCha
- 逻辑回归不能解决非线性问题,而svm可以解决
江河地笑
机器学习逻辑回归支持向量机算法
逻辑回归和支持向量机(SVM)是两种常用的分类算法,它们在处理数据时有一些不同的特点,特别是在面对非线性问题时。1.逻辑回归逻辑回归本质上是一个线性分类模型。它的目的是寻找一个最适合数据的直线(或超平面),用来将不同类别的数据分开。它的分类决策是基于输入特征的加权和,即:由于逻辑回归是线性模型,因此它只能在数据集是线性可分的情况下表现良好。如果数据的分布是非线性的,逻辑回归可能无法有效地分类,因为
- Flutter 轻松实现动态更新 ListView
技术小黑屋_
pythonjavajsvuejavascript
在App开发过程中,ListView是比较很常见的控件,用来处理列表类的数据展示。当然Flutter也是支持的,由于Flutter是归属于声明式UI编程,其处理起来要更加的简单与便捷。本文将通过一个极简单的例子来说明一下如何实现动态更新数据。在贴代码之前,先介绍一些概念和内容数据集final_names=['Andrew','Bob','Charles'];int_counter=0;新的数据It
- 推荐开源项目:CXX-Qt - Rust与Qt的无缝融合
秋玥多
推荐开源项目:CXX-Qt-Rust与Qt的无缝融合去发现同类优质开源项目:https://gitcode.com/项目介绍CXX-Qt是一个用于创建Rust和C++之间双向绑定的工具集,专为集成Qt框架而设计。这个项目由一系列Rust包组成,允许你在Rust中实现QObject子类,然后在C++、QML和JavaScript环境中使用。CXX-Qt提供了一套完整的解决方案,包括代码生成器和库,使
- 基于Vue3的简易旋转音乐播放器
fsj2009yx
前端javascriptvue.js
先看效果图:在音乐播放时,右下角的图标会不停旋转,暂停时恢复原位。完整代码import{ref,onMounted}from"vue";import{ElNotification}from"element-plus";importmusicfrom'@/assets/music/骆集益-回梦游仙.mp3'constaudio=ref(null);constisRotate=ref(false);c
- Spring MVC中的拦截器和Servlet中的filter(过滤器)有什么区别?
猫猫爱敲代码
springmvcservlet
一、作用范围过滤器(Filter):作用于整个Web应用程序,可以对所有的Servlet和JSP等资源进行过滤处理,是Servlet规范的一部分,独立于特定的框架。例如,一个用于编码转换的过滤器可以对所有请求和响应进行字符集的转换,无论请求是针对哪个具体的业务模块。拦截器(Interceptor):主要作用于SpringMVC框架中的请求处理过程,仅对SpringMVC管理的控制器方法的调用进行拦
- 大语言模型常见任务及评测数据集汇总(一):70 余个数据集!
大F的智能小课
大模型实战人工智能
1.文本分类1.1.中文文本分类数据集:THUCNews:清华大学推出的中文新闻文本数据集,包含了74万篇新闻文章,覆盖了10个类别。LCQMC:哈尔滨工业大学发布的数据集,主要用于中文句子匹配任务,也常用于文本分类。BQCorpus:同样用于中文句子匹配,也可用于文本分类。1.2.英文文本分类数据集:IMDb:包含50,000条影评数据,分为正面和负面两类,常用于情感分析。20Newsgroup
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" {
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持