在《C语言数据输出大汇总以及轻量进阶》一节中我们举了一个例子,是输出一个 4×4 的整数矩阵,代码如下:
运行结果:
20 345 700 22 56720 9999 20098 2 233 205 1 6666 34 0 23 23006783
矩阵共有 16 个整数,我们为每个整数定义了一个变量,也就是 16 个变量。那么,为了减少变量的数量,让开发更有效率,能不能为多个数据定义一个变量呢?比如,把每一行的整数放在一个变量里面,或者把 16 个整数全部都放在一个变量里面。答案当然是肯定的,办法就是使用数组(Array)。
我们知道,要想把数据放入内存,必须先要分配内存空间。放入4个整数,就得分配4个int
类型的内存空间:
int a[4];
这样,就在内存中分配了4个int
类型的内存空间,共 4×4=16 个字节,并为它们起了一个名字,叫a
。
我们把这样的一组数据的集合称为数组(Array),它所包含的每一个数据叫做数组元素(Element),所包含的数据的个数称为数组长度(Length),例如int a[4];
就定义了一个长度为4的整型数组,名字是a
。
数组中的每个元素都有一个序号,这个序号从0开始,而不是从我们熟悉的1开始,称为下标(Index)。使用数组元素时,指明下标即可,形式为:
arrayName[index]
arrayName 为数组名称,index 为下标。例如,a[0] 表示第0个元素,a[3] 表示第3个元素。
接下来我们就把第一行的4个整数放入数组:
a[0]=20; a[1]=345; a[2]=700; a[3]=22;
这里的0、1、2、3就是数组下标,a[0]、a[1]、a[2]、a[3] 就是数组元素。
在学习过程中,我们经常会使用循环结构将数据放入数组中(也就是为数组元素逐个赋值),然后再使用循环结构输出(也就是依次读取数组元素的值),下面我们就来演示一下如何将 1~10 这十个数字放入数组中:
运行结果:
1 2 3 4 5 6 7 8 9 10
变量 i 既是数组下标,也是循环条件;将数组下标作为循环条件,达到最后一个元素时就结束循环。数组 nums 的最大下标是 9,也就是不能超过 10,所以我们规定循环的条件是 i<10,一旦 i 达到 10 就得结束循环。
更改上面的代码,让用户输入 10 个数字并放入数组中:
运行结果:
22 18 928 5 4 82 30 10 666 888↙ 22 18 928 5 4 82 30 10 666 888
第 8 行代码中,scanf() 读取数据时需要一个地址(地址用来指明数据的存储位置),而 nums[i] 表示一个具体的数组元素,所以我们要在前边加 & 来获取地址。
最后我们来总结一下数组的定义方式:
dataType arrayName[length];
dataType 为数据类型,arrayName 为数组名称,length 为数组长度。例如:
需要注意的是:
1) 数组中每个元素的数据类型必须相同,对于int a[4];
,每个元素都必须为 int。
2) 数组长度 length 最好是整数或者常量表达式,例如 10、20*4 等,这样在所有编译器下都能运行通过;如果 length 中包含了变量,例如 n、4*m 等,在某些编译器下就会报错,我们将在《C语言变长数组:使用变量指明数组的长度》一节专门讨论这点。
3) 访问数组元素时,下标的取值范围为 0 ≤ index < length,过大或过小都会越界,导致数组溢出,发生不可预测的情况,我们将在《C语言数组的越界和溢出》一节重点讨论,请大家务必要引起注意。
数组是一个整体,它的内存是连续的;也就是说,数组元素之间是相互挨着的,彼此之间没有一点点缝隙。下图演示了int a[4];
在内存中的存储情形:
「数组内存是连续的」这一点很重要,所以我使用了一个大标题来强调。连续的内存为指针操作(通过指针来访问数组元素)和内存处理(整块内存的复制、写入等)提供了便利,这使得数组可以作为缓存(临时存储数据的一块内存)使用。大家暂时可能不理解这句话是什么意思,等后边学了指针和内存自然就明白了。
上面的代码是先定义数组再给数组赋值,我们也可以在定义数组的同时赋值,例如:
int a[4] = {20, 345, 700, 22};
数组元素的值由{ }
包围,各个值之间以,
分隔。
对于数组的初始化需要注意以下几点:
1) 可以只给部分元素赋值。当{ }
中值的个数少于元素个数时,只给前面部分元素赋值。例如:
int a[10]={12, 19, 22 , 993, 344};
表示只给 a[0]~a[4] 5个元素赋值,而后面 5 个元素自动初始化为 0。
当赋值的元素少于数组总体元素的时候,剩余的元素自动初始化为 0:
我们可以通过下面的形式将数组的所有元素初始化为 0:
int nums[10] = {0}; char str[10] = {0}; float scores[10] = {0.0};
由于剩余的元素会自动初始化为 0,所以只需要给第 0 个元素赋值为 0 即可。
2) 只能给元素逐个赋值,不能给数组整体赋值。例如给 10 个元素全部赋值为 1,只能写作:
int a[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
而不能写作:
int a[10] = 1;
3) 如给全部元素赋值,那么在定义数组时可以不给出数组长度。例如:
int a[] = {1, 2, 3, 4, 5};
等价于
int a[5] = {1, 2, 3, 4, 5};
最后,我们借助数组来输出一个 4×4 的矩阵:
纯文本复制
C语言二维数组的定义、初始化、赋值
上节讲解的数组可以看作是一行连续的数据,只有一个下标,称为一维数组。在实际问题中有很多数据是二维的或多维的,因此C语言允许构造多维数组。多维数组元素有多个下标,以确定它在数组中的位置。本节只介绍二维数组,多维数组可由二维数组类推而得到。
二维数组定义的一般形式是:
dataType arrayName[length1][length2];
其中,dataType 为数据类型,arrayName 为数组名,length1 为第一维下标的长度,length2 为第二维下标的长度。
我们可以将二维数组看做一个 Excel 表格,有行有列,length1 表示行数,length2 表示列数,要在二维数组中定位某个元素,必须同时指明行和列。例如:
int a[3][4];
定义了一个 3 行 4 列的二维数组,共有 3×4=12 个元素,数组名为 a,即:
a[0][0], a[0][1], a[0][2], a[0][3]
a[1][0], a[1][1], a[1][2], a[1][3]
a[2][0], a[2][1], a[2][2], a[2][3]
如果想表示第 2 行第 1 列的元素,应该写作 a[2][1]。
也可以将二维数组看成一个坐标系,有 x 轴和 y 轴,要想在一个平面中确定一个点,必须同时知道 x 轴和 y 轴。
二维数组在概念上是二维的,但在内存中是连续存放的;换句话说,二维数组的各个元素是相互挨着的,彼此之间没有缝隙。那么,如何在线性内存中存放二维数组呢?有两种方式:
在C语言中,二维数组是按行排列的。也就是先存放 a[0] 行,再存放 a[1] 行,最后存放 a[2] 行;每行中的 4 个元素也是依次存放。数组 a 为 int 类型,每个元素占用 4 个字节,整个数组共占用 4×(3×4)=48 个字节。
你可以这样认为,二维数组是由多个长度相同的一维数组构成的。
【实例1】一个学习小组有 5 个人,每个人有 3 门课程的考试成绩,求该小组各科的平均分和总平均分。
-- | Math | C | English |
张涛 | 80 | 75 | 92 |
王正华 | 61 | 65 | 71 |
李丽丽 | 59 | 63 | 70 |
赵圈圈 | 85 | 87 | 90 |
周梦真 | 76 | 77 | 85 |
对于该题目,可以定义一个二维数组 a[5][3] 存放 5 个人 3 门课的成绩,定义一个一维数组 v[3] 存放各科平均分,再定义一个变量 average 存放总平均分。最终编程如下:
运行结果:
Input score:
80 61 59 85 76 75 65 63 87 77 92 71 70 90 85↙
Math: 72
C Languag: 73
English: 81
Total: 75
程序使用了一个嵌套循环来读取所有学生所有科目的成绩。在内层循环中依次读入某一门课程的各个学生的成绩,并把这些成绩累加起来,退出内层循环(进入外层循环)后再把该累加成绩除以 5 送入 v[i] 中,这就是该门课程的平均分。外层循环共循环三次,分别求出三门课各自的平均成绩并存放在数组 v 中。所有循环结束后,把 v[0]、v[1]、v[2] 相加除以 3 就可以得到总平均分。
二维数组的初始化可以按行分段赋值,也可按行连续赋值。
例如,对于数组 a[5][3],按行分段赋值应该写作:
int a[5][3]={ {80,75,92}, {61,65,71}, {59,63,70}, {85,87,90}, {76,77,85} };
按行连续赋值应该写作:
int a[5][3]={80, 75, 92, 61, 65, 71, 59, 63, 70, 85, 87, 90, 76, 77, 85};
这两种赋初值的结果是完全相同的。
【实例2】和“实例1”类似,依然求各科的平均分和总平均分,不过本例要求在初始化数组的时候直接给出成绩。
运行结果:
Math: 72
C Languag: 73
English: 81
Total: 75
1) 可以只对部分元素赋值,未赋值的元素自动取“零”值。例如:
int a[3][3] = {{1}, {2}, {3}};
是对每一行的第一列元素赋值,未赋值的元素的值为 0。赋值后各元素的值为:
1 0 0
2 0 0
3 0 0
再如:
int a[3][3] = {{0,1}, {0,0,2}, {3}};
赋值后各元素的值为:
0 1 0
0 0 2
3 0 0
2) 如果对全部元素赋值,那么第一维的长度可以不给出。例如:
int a[3][3] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
可以写为:
int a[][3] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
3) 二维数组可以看作是由一维数组嵌套而成的;如果一个数组的每个元素又是一个数组,那么它就是二维数组。当然,前提是各个元素的类型必须相同。根据这样的分析,一个二维数组也可以分解为多个一维数组,C语言允许这种分解。
例如,二维数组a[3][4]
可分解为三个一维数组,它们的数组名分别为 a[0]、a[1]、a[2]。
这三个一维数组可以直接拿来使用。这三个一维数组都有 4 个元素,比如,一维数组 a[0] 的元素为 a[0][0]、a[0][1]、a[0][2]、a[0][3]。
在实际开发中,经常需要查询数组中的元素。例如,学校为每位同学分配了一个唯一的编号,现在有一个数组,保存了实验班所有同学的编号信息,如果有家长想知道他的孩子是否进入了实验班,只要提供孩子的编号就可以,如果编号和数组中的某个元素相等,就进入了实验班,否则就没进入。
不幸的是,C语言标准库没有提供与数组查询相关的函数,所以我们只能自己编写代码。
所谓无序数组,就是数组元素的排列没有规律。无序数组元素查询的思路也很简单,就是用循环遍历数组中的每个元素,把要查询的值挨个比较一遍。请看下面的代码:
运行结果:
Input an integer: 100↙
100 is in the array, it's index is 7.
或者
Input an integer: 28↙
28 isn't in the array.
这段代码的作用是让用户输入一个数字,判断该数字是否在数组中,如果在,就打印出下标。
第10~15行代码是关键,它会遍历数组中的每个元素,和用户输入的数字进行比较,如果相等就获取它的下标并跳出循环。
注意:数组下标的取值范围是非负数,当 thisindex >= 0 时,该数字在数组中,当 thisindex < 0 时,该数字不在数组中,所以在定义 thisindex 变量时,必须将其初始化为一个负数。
查询无序数组需要遍历数组中的所有元素,而查询有序数组只需要遍历其中一部分元素。例如有一个长度为 10 的整型数组,它所包含的元素按照从小到大的顺序(升序)排列,假设比较到第 4 个元素时发现它的值大于输入的数字,那么剩下的 5 个元素就没必要再比较了,肯定也大于输入的数字,这样就减少了循环的次数,提高了执行效率。
请看下面的代码:
与前面的代码相比,这段代码的改动很小,只增加了一个判断语句,也就是 12~14 行。因为数组元素是升序排列的,所以当 nums[i] > num 时,i 后边的元素也都大于 num 了,num 肯定不在数组中了,就没有必要再继续比较了,终止循环即可。
用来存放字符的数组称为字符数组,例如:
字符数组实际上是一系列字符的集合,也就是字符串(String)。在C语言中,没有专门的字符串变量,没有string类型,通常就用一个字符数组来存放一个字符串。
C语言规定,可以将字符串直接赋值给字符数组,例如:
数组第 0 个元素为'c'
,第 1 个元素为'.'
,第 2 个元素为'b'
,后面的元素以此类推。
为了方便,你也可以不指定数组长度,从而写作:
给字符数组赋值时,我们通常使用这种写法,将字符串一次性地赋值(可以指明数组长度,也可以不指明),而不是一个字符一个字符地赋值,那样做太麻烦了。
这里需要留意一个坑,字符数组只有在定义时才能将整个字符串一次性地赋值给它,一旦定义完了,就只能一个字符一个字符地赋值了。请看下面的例子:
字符串是一系列连续的字符的组合,要想在内存中定位一个字符串,除了要知道它的开头,还要知道它的结尾。找到字符串的开头很容易,知道它的名字(字符数组名或者字符串名)就可以;然而,如何找到字符串的结尾呢?C语言的解决方案有点奇妙,或者说有点奇葩。
在C语言中,字符串总是以'\0'
作为结尾,所以'\0'
也被称为字符串结束标志,或者字符串结束符。
'\0'
是 ASCII 码表中的第 0 个字符,英文称为 NUL,中文称为“空字符”。该字符既不能显示,也没有控制功能,输出该字符不会有任何效果,它在C语言中唯一的作用就是作为字符串结束标志。
C语言在处理字符串时,会从前往后逐个扫描字符,一旦遇到'\0'
就认为到达了字符串的末尾,就结束处理。'\0'
至关重要,没有'\0'
就意味着永远也到达不了字符串的结尾。
由" "
包围的字符串会自动在末尾添加'\0'
。例如,"abc123"
从表面看起来只包含了 6 个字符,其实不然,C语言会在最后隐式地添加一个'\0'
,这个过程是在后台默默地进行的,所以我们感受不到。
下图演示了"C program"
在内存中的存储情形:
需要注意的是,逐个字符地给数组赋值并不会自动添加'\0'
,例如:
数组 str 的长度为 3,而不是 4,因为最后没有'\0'
。
当用字符数组存储字符串时,要特别注意'\0'
,要为'\0'
留个位置;这意味着,字符数组的长度至少要比字符串的长度大 1。请看下面的例子:
"abc123"
看起来只包含了 6 个字符,我们却将 str 的长度定义为 7,就是为了能够容纳最后的'\0'
。如果将 str 的长度定义为 6,它就无法容纳'\0'
了。
当字符串长度大于数组长度时,有些较老或者不严格的编译器并不会报错,甚至连警告都没有,这就为以后的错误埋下了伏笔,读者自己要多多注意。
有些时候,程序的逻辑要求我们必须逐个字符地为数组赋值,这个时候就很容易遗忘字符串结束标志'\0'
。下面的代码中,我们将 26 个大写英文字符存入字符数组,并以字符串的形式输出:
在 VS2015 下的运行结果:
ABCDEFGHIJKLMNOPQRSTUVWXYZ口口口口i口口0 ?
口
表示无法显示的特殊字符。
大写字母在 ASCII 码表中是连续排布的,编码值从 65 开始,到 90 结束,使用循环非常方便。
在《C语言变量的定义位置以及初始值》一节中我们讲到,在很多编译器下,局部变量的初始值是随机的,是垃圾值,而不是我们通常认为的“零”值。局部数组(在函数内部定义的数组,本例中的 str 数组就是在 main() 函数内部定义的)也有这个问题,很多编译器并不会把局部数组的内存都初始化为“零”值,而是放任不管,爱是什么就是什么,所以它们的值也是没有意义的,也是垃圾值。
在函数内部定义的变量、数组、结构体、共用体等都称为局部数据。在很多编译器下,局部数据的初始值都是随机的、无意义的,而不是我们通常认为的“零”值。这一点非常重要,大家一定要谨记,否则后面会遇到很多奇葩的错误。
本例中的 str 数组在定义完成以后并没有立即初始化,所以它所包含的元素的值都是随机的,只有很小的概率会是“零”值。循环结束以后,str 的前 26 个元素被赋值了,剩下的 4 个元素的值依然是随机的,不知道是什么。
printf() 输出字符串时,会从第 0 个元素开始往后检索,直到遇见'\0'
才停止,然后把'\0'
前面的字符全部输出,这就是 printf() 输出字符串的原理。本例中我们使用 printf() 输出 str,按理说到了第 26 个元素就能检索到'\0'
,就到达了字符串的末尾,然而事实却不是这样,由于我们并未对最后 4 个元素赋值,所以第 26 个元素不是'\0'
,第 27 个也不是,第 28 个也不是……可能到了第 50 个元素才遇到'\0'
,printf() 把这 50 个字符全部输出出来,就是上面的样子,多出来的字符毫无意义,甚至不能显示。
数组总共才 30 个元素,到了第 50 个元素不早就超出数组范围了吗?是的,的确超出范围了!然而,数组后面依然有其它的数据,printf() 也会将这些数据作为字符串输出。
你看,不注意'\0'
的后果有多严重,不但不能正确处理字符串,甚至还会毁坏其它数据。
要想避免这些问题也很容易,在字符串的最后手动添加'\0'
即可。修改上面的代码,在循环结束后添加'\0'
:
第 9 行为新添加的代码,它让字符串能够正常结束。根据 ASCII 码表,字符'\0'
的编码值就是 0。
但是,这样的写法貌似有点业余,或者说不够简洁,更加专业的做法是将数组的所有元素都初始化为“零”值,这样才能够从根本上避免问题。再次修改上面的代码:
还记得《什么是数组》一节中强调过的吗?如果只初始化部分数组元素,那么剩余的数组元素也会自动初始化为“零”值,所以我们只需要将 str 的第 0 个元素赋值为 0,剩下的元素就都是 0 了。
所谓字符串长度,就是字符串包含了多少个字符(不包括最后的结束符'\0'
)。例如"abc"
的长度是 3,而不是 4。
在C语言中,我们使用string.h
头文件中的 strlen() 函数来求字符串的长度,它的用法为:
length strlen(strname);
strname 是字符串的名字,或者字符数组的名字;length 是使用 strlen() 后得到的字符串长度,是一个整数。
下面是一个完整的例子,它输出《C语言入门教程》网址的长度:
运行结果:
The lenth of the string is 25.
C语言字符串的输入和输出
其实在《C语言输入输出》一章中我们已经提到了如何输入输出字符串,但是那个时候我们还没有讲解字符串,大家理解的可能不透彻,所以本节我们有必要再深入和细化一下。
在C语言中,有两个函数可以在控制台(显示器)上输出字符串,它们分别是:
%s
输出字符串,不能自动换行。除了字符串,printf() 还能输出其他类型的数据。
这两个函数相信大家已经非常熟悉了,这里不妨再演示一下,请看下面的代码:
运行结果:
http://c.biancheng.net
http://c.biancheng.net
http://c.biancheng.net
http://c.biancheng.net
注意,输出字符串时只需要给出名字,不能带后边的[ ]
,例如,下面的两种写法都是错误的:
printf("%s\n", str[]);
puts(str[10]);
在C语言中,有两个函数可以让用户从键盘上输入字符串,它们分别是:
%s
输入字符串。除了字符串,scanf() 还能输入其他类型的数据。
但是,scanf() 和 gets() 是有区别的:
请看下面的例子:
运行结果:
Input a string: C C++ Java Python↙
Input a string: PHP JavaScript↙
str1: C C++ Java Python
str2: PHP
str3: JavaScript
第一次输入的字符串被 gets() 全部读取,并存入 str1 中。第二次输入的字符串,前半部分被第一个 scanf() 读取并存入 str2 中,后半部分被第二个 scanf() 读取并存入 str3 中。
注意,scanf() 在读取数据时需要的是数据的地址,这一点是恒定不变的,所以对于 int、char、float 等类型的变量都要在前边添加&
以获取它们的地址。但是在本段代码中,我们只给出了字符串的名字,却没有在前边添加&
,这是为什么呢?因为字符串名字或者数组名字在使用的过程中一般都会转换为地址,所以再添加&
就是多此一举,甚至会导致错误了。
就目前学到的知识而言,int、char、float 等类型的变量用于 scanf() 时都要在前面添加&
,而数组或者字符串用于 scanf() 时不用添加&
,它们本身就会转换为地址。读者一定要谨记这一点。
至于数组名字(字符串名字)和地址的转换细节,以及数组名字什么时候会转换为地址,我们将在《数组到底在什么时候会转换为指针》一节中详细讲解,大家暂时“死记硬背”即可。
以上是 scanf() 和 gets() 的一般用法,很多教材也是这样讲解的,所以大部分初学者都认为 scanf() 不能读取包含空格的字符串,不能替代 gets()。其实不然,scanf() 的用法还可以更加复杂和灵活,它不但可以完全替代 gets() 读取一整行字符串,而且比 gets() 的功能更加强大。比如,以下功能都是 gets() 不具备的:
这些我们已经在《scanf的高级用法,原来scanf还有这么多新技能》讲解过了,本节就不再赘述了。
C语言提供了丰富的字符串处理函数,可以对字符串进行输入、输出、合并、修改、比较、转换、复制、搜索等操作,使用这些现成的函数可以大大减轻我们的编程负担。
用于输入输出的字符串函数,例如printf
、puts
、scanf
、gets
等,使用时要包含头文件stdio.h
,而使用其它字符串函数要包含头文件string.h
。string.h
是一个专门用来处理字符串的头文件,它包含了很多字符串处理函数,由于篇幅限制,本节只能讲解几个常用的,有兴趣的读者请猛击这里查阅所有函数。
strcat 是 string catenate 的缩写,意思是把两个字符串拼接在一起,语法格式为:
strcat(arrayName1, arrayName2);
arrayName1、arrayName2 为需要拼接的字符串。
strcat() 将把 arrayName2 连接到 arrayName1 后面,并删除原来 arrayName1 最后的结束标志'\0'
。这意味着,arrayName1 必须足够长,要能够同时容纳 arrayName1 和 arrayName2,否则会越界(超出范围)。
strcat() 的返回值为 arrayName1 的地址。
下面是一个简单的演示:
运行结果:
Input a URL: http://c.biancheng.net/cpp/u/jiaocheng/↙
The URL is http://c.biancheng.net/cpp/u/jiaocheng/
strcpy 是 string copy 的缩写,意思是字符串复制,也即将字符串从一个地方复制到另外一个地方,语法格式为:
strcpy(arrayName1, arrayName2);
strcpy() 会把 arrayName2 中的字符串拷贝到 arrayName1 中,字符串结束标志'\0'
也一同拷贝。请看下面的例子:
运行结果:
str1: http://c.biancheng.net/cpp/u/jiaocheng/
你看,将 str2 复制到 str1 后,str1 中原来的内容就被覆盖了。
另外,strcpy() 要求 arrayName1 要有足够的长度,否则不能全部装入所拷贝的字符串。
strcmp 是 string compare 的缩写,意思是字符串比较,语法格式为:
strcmp(arrayName1, arrayName2);
arrayName1 和 arrayName2 是需要比较的两个字符串。
字符本身没有大小之分,strcmp() 以各个字符对应的 ASCII 码值进行比较。strcmp() 从两个字符串的第 0 个字符开始比较,如果它们相等,就继续比较下一个字符,直到遇见不同的字符,或者到字符串的末尾。
返回值:若 arrayName1 和 arrayName2 相同,则返回0;若 arrayName1 大于 arrayName2,则返回大于 0 的值;若 arrayName1 小于 arrayName2,则返回小于0 的值。
对4组字符串进行比较:
运行结果:
a VS b: 32
a VS c: -31
a VS d: 0
在实际开发中,有很多场景需要我们将数组元素按照从大到小(或者从小到大)的顺序排列,这样在查阅数据时会更加直观,例如:
对数组元素进行排序的方法有很多种,比如冒泡排序、归并排序、选择排序、插入排序、快速排序等,其中最经典最需要掌握的是「冒泡排序」。
以从小到大排序为例,冒泡排序的整体思想是这样的:
整个排序过程就好像气泡不断从水里冒出来,最大的先出来,次大的第二出来,最小的最后出来,所以将这种排序方式称为冒泡排序(Bubble Sort)。
下面我们以“3 2 4 1”为例对冒泡排序进行说明。
第一轮 排序过程
3 2 4 1 (最初)
2 3 4 1 (比较3和2,交换)
2 3 4 1 (比较3和4,不交换)
2 3 1 4 (比较4和1,交换)
第一轮结束,最大的数字 4 已经在最后面,因此第二轮排序只需要对前面三个数进行比较。
第二轮 排序过程
2 3 1 4 (第一轮排序结果)
2 3 1 4 (比较2和3,不交换)
2 1 3 4 (比较3和1,交换)
第二轮结束,次大的数字 3 已经排在倒数第二个位置,所以第三轮只需要比较前两个元素。
第三轮 排序过程
2 1 3 4 (第二轮排序结果)
1 2 3 4 (比较2和1,交换)
至此,排序结束。
对拥有 n 个元素的数组 R[n] 进行 n-1 轮比较。
第一轮,逐个比较 (R[1], R[2]), (R[2], R[3]), (R[3], R[4]), ……. (R[N-1], R[N]),最大的元素被移动到 R[n] 上。
第二轮,逐个比较 (R[1], R[2]), (R[2], R[3]), (R[3], R[4]), ……. (R[N-2], R[N-1]),次大的元素被移动到 R[n-1] 上。
。。。。。。
以此类推,直到整个数组从小到大排序。
具体的代码实现如下所示:
运行结果:
1 2 3 4 5 6 7 8 9 10
上面的算法是大部分教材中提供的算法,其中有一点是可以优化的:当比较到第 i 轮的时候,如果剩下的元素已经排序好了,那么就不用再继续比较了,跳出循环即可,这样就减少了比较的次数,提高了执行效率。
未经优化的算法一定会进行 n-1 轮比较,经过优化的算法最多进行 n-1 轮比较,高下立判。
优化后的算法实现如下所示:
我们额外设置了一个变量 isSorted,用它作为标志,值为“真”表示剩下的元素已经排序好了,值为“假”表示剩下的元素还未排序好。
每一轮比较之前,我们预先假设剩下的元素已经排序好了,并将 isSorted 设置为“真”,一旦在比较过程中需要交换元素,就说明假设是错的,剩下的元素没有排序好,于是将 isSorted 的值更改为“假”。
每一轮循环结束后,通过检测 isSorted 的值就知道剩下的元素是否排序好。
数组(Array)是一系列相同类型的数据的集合,可以是一维的、二维的、多维的;最常用的是一维数组和二维数组,多维数组较少用到。
1) 数组的定义格式为:
type arrayName[length]
type 为数据类型,arrayName 为数组名,length 为数组长度。 需要注意的是:
2) 访问数组元素的格式为:
arrayName[index]
index 为数组下标。注意 index 的值必须大于等于零,并且小于数组长度,否则会发生数组越界,出现意想不到的错误,我们已在《C语言数组的越界和溢出》一节重点讨论过。
3) 可以对数组中的单个元素赋值,也可以整体赋值,例如:
4) 字符串是本章的重点内容,大家要特别注意字符串结束标志'\0'
,各种字符串处理函数在定位字符串时都把'\0'
作为结尾,没有'\0'
就到达不了字符串的结尾。
学完了数组,有两项内容大家可以深入研究了,分别是查找(Search)和排序(Sort),它们在实际开发中都经常使用,比如:
本章我们讲解了最简单的查找和排序算法,分别是顺序查找(遍历数组查找某个元素)和冒泡排序,这些都是最基本的,有兴趣的读者也可以深入研究,下面我给列出了几篇文章: