在 Go http包的Server中,每一个请求在都有一个对应的 goroutine 去处理。请求处理函数通常会启动额外的 goroutine 用来访问后端服务,比如数据库和RPC服务。用来处理一个请求的 goroutine 通常需要访问一些与请求特定的数据,比如终端用户的身份认证信息、验证相关的token、请求的截止时间。 当一个请求被取消或超时时,所有用来处理该请求的 goroutine 都应该迅速退出,然后系统才能释放这些 goroutine 占用的资源。
package main
import (
"fmt"
"sync"
"time"
)
var wg sync.WaitGroup
// 初始的例子
func worker() {
for {
fmt.Println("worker")
time.Sleep(time.Second)
}
// 如何接收外部命令实现退出
wg.Done()
}
func main() {
wg.Add(1)
go worker()
// 如何优雅的实现结束子goroutine
wg.Wait()
fmt.Println("over")
}
package main
import (
"fmt"
"sync"
"time"
)
var wg sync.WaitGroup
var exit bool
// 全局变量方式存在的问题:
// 1. 使用全局变量在跨包调用时不容易统一
// 2. 如果worker中再启动goroutine,就不太好控制了。
func worker() {
for {
fmt.Println("worker")
time.Sleep(time.Second)
if exit {
break
}
}
wg.Done()
}
func main() {
wg.Add(1)
go worker()
time.Sleep(time.Second * 3) // sleep3秒以免程序过快退出
exit = true // 修改全局变量实现子goroutine的退出
wg.Wait()
fmt.Println("over")
}
package main
import (
"fmt"
"sync"
"time"
)
var wg sync.WaitGroup
// 管道方式存在的问题:
// 1. 使用全局变量在跨包调用时不容易实现规范和统一,需要维护一个共用的channel
func worker(exitChan chan struct{}) {
LOOP:
for {
fmt.Println("worker")
time.Sleep(time.Second)
select {
case <-exitChan: // 等待接收上级通知
break LOOP
default:
}
}
wg.Done()
}
func main() {
var exitChan = make(chan struct{})
wg.Add(1)
go worker(exitChan)
time.Sleep(time.Second * 3) // sleep3秒以免程序过快退出
exitChan <- struct{}{} // 给子goroutine发送退出信号
close(exitChan)
wg.Wait()
fmt.Println("over")
}
package main
import (
"context"
"fmt"
"sync"
"time"
)
var wg sync.WaitGroup
func worker(ctx context.Context) {
LOOP:
for {
fmt.Println("worker")
time.Sleep(time.Second)
select {
case <-ctx.Done(): // 等待上级通知
break LOOP
default:
}
}
wg.Done()
}
func main() {
ctx, cancel := context.WithCancel(context.Background())
wg.Add(1)
go worker(ctx)
time.Sleep(time.Second * 3)
cancel() // 通知子goroutine结束
wg.Wait()
fmt.Println("over")
}
当子goroutine又开启另外一个goroutine时,只需要将ctx传入即可:
package main
import (
"context"
"fmt"
"sync"
"time"
)
var wg sync.WaitGroup
func worker(ctx context.Context) {
go worker2(ctx)
LOOP:
for {
fmt.Println("worker")
time.Sleep(time.Second)
select {
case <-ctx.Done(): // 等待上级通知
break LOOP
default:
}
}
wg.Done()
}
func worker2(ctx context.Context) {
LOOP:
for {
fmt.Println("worker2")
time.Sleep(time.Second)
select {
case <-ctx.Done(): // 等待上级通知
break LOOP
default:
}
}
}
func main() {
ctx, cancel := context.WithCancel(context.Background())
wg.Add(1)
go worker(ctx)
time.Sleep(time.Second * 3)
cancel() // 通知子goroutine结束
wg.Wait()
fmt.Println("over")
}
Go1.7加入了一个新的标准库context
,它定义了Context
类型,专门用来简化 对于处理单个请求的多个 goroutine 之间与请求域的数据、取消信号、截止时间等相关操作,这些操作可能涉及多个 API 调用。
对服务器传入的请求应该创建上下文,而对服务器的传出调用应该接受上下文。它们之间的函数调用链必须传递上下文,或者可以使用WithCancel
、WithDeadline
、WithTimeout
或WithValue
创建的派生上下文。当一个上下文被取消时,它派生的所有上下文也被取消。
context.Context
是一个接口,该接口定义了四个需要实现的方法。具体签名如下:
type Context interface {
Deadline() (deadline time.Time, ok bool)
Done() <-chan struct{}
Err() error
Value(key interface{}) interface{}
}
其中:
Deadline
方法需要返回当前Context
被取消的时间,也就是完成工作的截止时间(deadline);Done
方法需要返回一个Channel
,这个Channel会在当前工作完成或者上下文被取消之后关闭,多次调用Done
方法会返回同一个Channel;Err
方法会返回当前Context
结束的原因,它只会在Done
返回的Channel被关闭时才会返回非空的值;如果当前Context
被取消就会返回Canceled
错误;
如果当前Context
超时就会返回DeadlineExceeded
错误;
Value
方法会从Context
中返回键对应的值,对于同一个上下文来说,多次调用Value
并传入相同的Key
会返回相同的结果,该方法仅用于传递跨API和进程间跟请求域的数据;Go内置两个函数:Background()
和TODO()
,这两个函数分别返回一个实现了Context
接口的background
和todo
。我们代码中最开始都是以这两个内置的上下文对象作为最顶层的partent context
,衍生出更多的子上下文对象。
Background()
主要用于main函数、初始化以及测试代码中,作为Context这个树结构的最顶层的Context,也就是根Context。
TODO()
,它目前还不知道具体的使用场景,如果我们不知道该使用什么Context的时候,可以使用这个。
background
和todo
本质上都是emptyCtx
结构体类型,是一个不可取消,没有设置截止时间,没有携带任何值的Context。
此外,context
包中还定义了四个With系列函数。
WithCancel
的函数签名如下:
func WithCancel(parent Context) (ctx Context, cancel CancelFunc)
WithCancel
返回带有新Done通道的父节点的副本。当调用返回的cancel函数或当关闭父上下文的Done通道时,将关闭返回上下文的Done通道,无论先发生什么情况。
取消此上下文将释放与其关联的资源,因此代码应该在此上下文中运行的操作完成后立即调用cancel。
func gen(ctx context.Context) <-chan int {
dst := make(chan int)
n := 1
go func() {
for {
select {
case <-ctx.Done():
return // return结束该goroutine,防止泄露
case dst <- n:
n++
}
}
}()
return dst
}
func main() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel() // 当我们取完需要的整数后调用cancel
for n := range gen(ctx) {
fmt.Println(n)
if n == 5 {
break
}
}
}
上面的示例代码中,gen
函数在单独的goroutine中生成整数并将它们发送到返回的通道。
gen的调用者在使用生成的整数之后需要取消上下文,以免gen
启动的内部goroutine发生泄漏。
WithDeadline
的函数签名如下:
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc)
返回父上下文的副本,并将deadline调整为不迟于d。如果父上下文的deadline已经早于d,则WithDeadline(parent, d)在语义上等同于父上下文。当截止日过期时,当调用返回的cancel函数时,或者当父上下文的Done通道关闭时,返回上下文的Done通道将被关闭,以最先发生的情况为准。
取消此上下文将释放与其关联的资源,因此代码应该在此上下文中运行的操作完成后立即调用cancel。
func main() {
d := time.Now().Add(50 * time.Millisecond)
ctx, cancel := context.WithDeadline(context.Background(), d)
// 尽管ctx会过期,但在任何情况下调用它的cancel函数都是很好的实践。
// 如果不这样做,可能会使上下文及其父类存活的时间超过必要的时间。
defer cancel()
select {
case <-time.After(1 * time.Second):
fmt.Println("overslept")
case <-ctx.Done():
fmt.Println(ctx.Err())
}
}
上面的代码中,定义了一个50毫秒之后过期的deadline,然后我们调用context.WithDeadline(context.Background(), d)
得到一个上下文(ctx)和一个取消函数(cancel),然后使用一个select让主程序陷入等待:等待1秒后打印overslept
退出或者等待ctx过期后退出。
因为ctx50秒后就过期,所以ctx.Done()
会先接收到值,上面的代码会打印ctx.Err()取消原因。
WithTimeout
的函数签名如下:
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)
WithTimeout
返回WithDeadline(parent, time.Now().Add(timeout))
。
取消此上下文将释放与其相关的资源,因此代码应该在此上下文中运行的操作完成后立即调用cancel,通常用于数据库或者网络连接的超时控制。具体示例如下:
package main
import (
"context"
"fmt"
"sync"
"time"
)
// context.WithTimeout
var wg sync.WaitGroup
func worker(ctx context.Context) {
LOOP:
for {
fmt.Println("db connecting ...")
time.Sleep(time.Millisecond * 10) // 假设正常连接数据库耗时10毫秒
select {
case <-ctx.Done(): // 50毫秒后自动调用
break LOOP
default:
}
}
fmt.Println("worker done!")
wg.Done()
}
func main() {
// 设置一个50毫秒的超时
ctx, cancel := context.WithTimeout(context.Background(), time.Millisecond*50)
wg.Add(1)
go worker(ctx)
time.Sleep(time.Second * 5)
cancel() // 通知子goroutine结束
wg.Wait()
fmt.Println("over")
}
WithValue
函数能够将请求作用域的数据与 Context 对象建立关系。声明如下:
func WithValue(parent Context, key, val interface{}) Context
WithValue
返回父节点的副本,其中与key关联的值为val。
仅对API和进程间传递请求域的数据使用上下文值,而不是使用它来传递可选参数给函数。
所提供的键必须是可比较的,并且不应该是string
类型或任何其他内置类型,以避免使用上下文在包之间发生冲突。WithValue
的用户应该为键定义自己的类型。为了避免在分配给interface{}时进行分配,上下文键通常具有具体类型struct{}
。或者,导出的上下文关键变量的静态类型应该是指针或接口。
package main
import (
"context"
"fmt"
"sync"
"time"
)
// context.WithValue
type TraceCode string
var wg sync.WaitGroup
func worker(ctx context.Context) {
key := TraceCode("TRACE_CODE")
traceCode, ok := ctx.Value(key).(string) // 在子goroutine中获取trace code
if !ok {
fmt.Println("invalid trace code")
}
LOOP:
for {
fmt.Printf("worker, trace code:%s\n", traceCode)
time.Sleep(time.Millisecond * 10) // 假设正常连接数据库耗时10毫秒
select {
case <-ctx.Done(): // 50毫秒后自动调用
break LOOP
default:
}
}
fmt.Println("worker done!")
wg.Done()
}
func main() {
// 设置一个50毫秒的超时
ctx, cancel := context.WithTimeout(context.Background(), time.Millisecond*50)
// 在系统的入口中设置trace code传递给后续启动的goroutine实现日志数据聚合
ctx = context.WithValue(ctx, TraceCode("TRACE_CODE"), "12512312234")
wg.Add(1)
go worker(ctx)
time.Sleep(time.Second * 5)
cancel() // 通知子goroutine结束
wg.Wait()
fmt.Println("over")
}
调用服务端API时如何在客户端实现超时控制?
// context_timeout/server/main.go
package main
import (
"fmt"
"math/rand"
"net/http"
"time"
)
// server端,随机出现慢响应
func indexHandler(w http.ResponseWriter, r *http.Request) {
number := rand.Intn(2)
if number == 0 {
time.Sleep(time.Second * 10) // 耗时10秒的慢响应
fmt.Fprintf(w, "slow response")
return
}
fmt.Fprint(w, "quick response")
}
func main() {
http.HandleFunc("/", indexHandler)
err := http.ListenAndServe(":8000", nil)
if err != nil {
panic(err)
}
}
// context_timeout/client/main.go
package main
import (
"context"
"fmt"
"io/ioutil"
"net/http"
"sync"
"time"
)
// 客户端
type respData struct {
resp *http.Response
err error
}
func doCall(ctx context.Context) {
transport := http.Transport{
// 请求频繁可定义全局的client对象并启用长链接
// 请求不频繁使用短链接
DisableKeepAlives: true, }
client := http.Client{
Transport: &transport,
}
respChan := make(chan *respData, 1)
req, err := http.NewRequest("GET", "http://127.0.0.1:8000/", nil)
if err != nil {
fmt.Printf("new requestg failed, err:%v\n", err)
return
}
req = req.WithContext(ctx) // 使用带超时的ctx创建一个新的client request
var wg sync.WaitGroup
wg.Add(1)
defer wg.Wait()
go func() {
resp, err := client.Do(req)
fmt.Printf("client.do resp:%v, err:%v\n", resp, err)
rd := &respData{
resp: resp,
err: err,
}
respChan <- rd
wg.Done()
}()
select {
case <-ctx.Done():
//transport.CancelRequest(req)
fmt.Println("call api timeout")
case result := <-respChan:
fmt.Println("call server api success")
if result.err != nil {
fmt.Printf("call server api failed, err:%v\n", result.err)
return
}
defer result.resp.Body.Close()
data, _ := ioutil.ReadAll(result.resp.Body)
fmt.Printf("resp:%v\n", string(data))
}
}
func main() {
// 定义一个100毫秒的超时
ctx, cancel := context.WithTimeout(context.Background(), time.Millisecond*100)
defer cancel() // 调用cancel释放子goroutine资源
doCall(ctx)
}
Go语言内置的flag
包实现了命令行参数的解析,flag
包使得开发命令行工具更为简单。
如果你只是简单的想要获取命令行参数,可以像下面的代码示例一样使用os.Args
来获取命令行参数。
package main
import (
"fmt"
"os"
)
//os.Args demo
func main() {
//os.Args是一个[]string
if len(os.Args) > 0 {
for index, arg := range os.Args {
fmt.Printf("args[%d]=%v\n", index, arg)
}
}
}
将上面的代码执行go build -o "args_demo"
编译之后,执行:
$ ./args_demo a b c d
args[0]=./args_demo
args[1]=a
args[2]=b
args[3]=c
args[4]=d
os.Args
是一个存储命令行参数的字符串切片,它的第一个元素是执行文件的名称。
本文介绍了flag包的常用函数和基本用法,更详细的内容请查看官方文档。
import flag
flag包支持的命令行参数类型有bool
、int
、int64
、uint
、uint64
、float
float64
、string
、duration
。
flag参数
有效值
字符串flag
合法字符串
整数flag
1234、0664、0x1234等类型,也可以是负数。
浮点数flag
合法浮点数
bool类型flag
1, 0, t, f, T, F, true, false, TRUE, FALSE, True, False。
时间段flag
任何合法的时间段字符串。如”300ms”、”-1.5h”、”2h45m”。合法的单位有”ns”、”us” /“µs”、”ms”、”s”、”m”、”h”。
有以下两种常用的定义命令行flag
参数的方法。
基本格式如下:
flag.Type(flag名, 默认值, 帮助信息)*Type
例如我们要定义姓名、年龄、婚否三个命令行参数,我们可以按如下方式定义:
name := flag.String("name", "张三", "姓名")
age := flag.Int("age", 18, "年龄")
married := flag.Bool("married", false, "婚否")
delay := flag.Duration("d", 0, "时间间隔")
需要注意的是,此时name
、age
、married
、delay
均为对应类型的指针。
基本格式如下:
flag.TypeVar(Type指针, flag名, 默认值, 帮助信息)
例如我们要定义姓名、年龄、婚否三个命令行参数,我们可以按如下方式定义:
var name string
var age int
var married bool
var delay time.Duration
flag.StringVar(&name, "name", "张三", "姓名")
flag.IntVar(&age, "age", 18, "年龄")
flag.BoolVar(&married, "married", false, "婚否")
flag.DurationVar(&delay, "d", 0, "时间间隔")
通过以上两种方法定义好命令行flag参数后,需要通过调用flag.Parse()
来对命令行参数进行解析。
支持的命令行参数格式有以下几种:
-flag xxx
(使用空格,一个-
符号)--flag xxx
(使用空格,两个-
符号)-flag=xxx
(使用等号,一个-
符号)--flag=xxx
(使用等号,两个-
符号)其中,布尔类型的参数必须使用等号的方式指定。
Flag解析在第一个非flag参数(单个”-“不是flag参数)之前停止,或者在终止符”–“之后停止。
flag.Args() 返回命令行参数后的其他参数,以[]string类型
flag.NArg() //返回命令行参数后的其他参数个数
flag.NFlag() //返回使用的命令行参数个数
func main() {
//定义命令行参数方式1
var name string
var age int
var married bool
var delay time.Duration
flag.StringVar(&name, "name", "张三", "姓名")
flag.IntVar(&age, "age", 18, "年龄")
flag.BoolVar(&married, "married", false, "婚否")
flag.DurationVar(&delay, "d", 0, "延迟的时间间隔")
//解析命令行参数
flag.Parse()
fmt.Println(name, age, married, delay)
//返回命令行参数后的其他参数
fmt.Println(flag.Args())
//返回命令行参数后的其他参数个数
fmt.Println(flag.NArg())
//返回使用的命令行参数个数
fmt.Println(flag.NFlag())
}
命令行参数使用提示:
$ ./flag_demo -help
Usage of ./flag_demo:
-age int
年龄 (default 18)
-d duration
时间间隔
-married
婚否
-name string
姓名 (default "张三")
正常使用命令行flag参数:
$ ./flag_demo -name 沙河娜扎 --age 28 -married=false -d=1h30m
沙河娜扎 28 false 1h30m0s
[]
0
4
使用非flag命令行参数:
$ ./flag_demo a b c
张三 18 false 0s
[a b c]
3
0
fmt标准库是我们在学习Go语言过程中接触最早最频繁的一个了,本文介绍了fmtb包的一些常用函数。
fmt包实现了类似C语言printf和scanf的格式化I/O。主要分为向外输出内容和获取输入内容两大部分。
标准库fmt
提供了以下几种输出相关函数。
Print
系列函数会将内容输出到系统的标准输出,区别在于Print
函数直接输出内容,Printf
函数支持格式化输出字符串,Println
函数会在输出内容的结尾添加一个换行符。
func Print(a ...interface{}) (n int, err error)
func Printf(format string, a ...interface{}) (n int, err error)
func Println(a ...interface{}) (n int, err error)
举个简单的例子:
func main() {
fmt.Print("在终端打印该信息。")
name := "沙河小王子"
fmt.Printf("我是:%s\n", name)
fmt.Println("在终端打印单独一行显示")
}
执行上面的代码输出:
在终端打印该信息。我是:沙河小王子
在终端打印单独一行显示
Fprint
系列函数会将内容输出到一个io.Writer
接口类型的变量w
中,我们通常用这个函数往文件中写入内容。
func Fprint(w io.Writer, a ...interface{}) (n int, err error)
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error)
func Fprintln(w io.Writer, a ...interface{}) (n int, err error)
举个例子:
// 向标准输出写入内容
fmt.Fprintln(os.Stdout, "向标准输出写入内容")
fileObj, err := os.OpenFile("./xx.txt", os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0644)
if err != nil {
fmt.Println("打开文件出错,err:", err)
return
}
name := "沙河小王子"
// 向打开的文件句柄中写入内容
fmt.Fprintf(fileObj, "往文件中写如信息:%s", name)
注意,只要满足io.Writer
接口的类型都支持写入。
Sprint
系列函数会把传入的数据生成并返回一个字符串。
func Sprint(a ...interface{}) string
func Sprintf(format string, a ...interface{}) string
func Sprintln(a ...interface{}) string
简单的示例代码如下:
s1 := fmt.Sprint("沙河小王子")
name := "沙河小王子"
age := 18
s2 := fmt.Sprintf("name:%s,age:%d", name, age)
s3 := fmt.Sprintln("沙河小王子")
fmt.Println(s1, s2, s3)
Errorf
函数根据format参数生成格式化字符串并返回一个包含该字符串的错误。
func Errorf(format string, a ...interface{}) error
通常使用这种方式来自定义错误类型,例如:
err := fmt.Errorf("这是一个错误")
*printf
系列函数都支持format格式化参数,在这里我们按照占位符将被替换的变量类型划分,方便查询和记忆。
占位符
说明
%v
值的默认格式表示
%+v
类似%v,但输出结构体时会添加字段名
%#v
值的Go语法表示
%T
打印值的类型
%%
百分号
示例代码如下:
fmt.Printf("%v\n", 100)
fmt.Printf("%v\n", false)
o := struct{ name string }{"小王子"}
fmt.Printf("%v\n", o)
fmt.Printf("%#v\n", o)
fmt.Printf("%T\n", o)
fmt.Printf("100%%\n")
输出结果如下:
100
false
{小王子}
struct { name string }{name:"小王子"}
struct { name string }
100%
占位符
说明
%t
true或false
占位符
说明
%b
表示为二进制
%c
该值对应的unicode码值
%d
表示为十进制
%o
表示为八进制
%x
表示为十六进制,使用a-f
%X
表示为十六进制,使用A-F
%U
表示为Unicode格式:U+1234,等价于”U+%04X”
%q
该值对应的单引号括起来的go语法字符字面值,必要时会采用安全的转义表示
示例代码如下:
n := 65
fmt.Printf("%b\n", n)
fmt.Printf("%c\n", n)
fmt.Printf("%d\n", n)
fmt.Printf("%o\n", n)
fmt.Printf("%x\n", n)
fmt.Printf("%X\n", n)
输出结果如下:
1000001
A
65
101
41
41
占位符
说明
%b
无小数部分、二进制指数的科学计数法,如-123456p-78
%e
科学计数法,如-1234.456e+78
%E
科学计数法,如-1234.456E+78
%f
有小数部分但无指数部分,如123.456
%F
等价于%f
%g
根据实际情况采用%e或%f格式(以获得更简洁、准确的输出)
%G
根据实际情况采用%E或%F格式(以获得更简洁、准确的输出)
示例代码如下:
f := 12.34
fmt.Printf("%b\n", f)
fmt.Printf("%e\n", f)
fmt.Printf("%E\n", f)
fmt.Printf("%f\n", f)
fmt.Printf("%g\n", f)
fmt.Printf("%G\n", f)
输出结果如下:
6946802425218990p-49
1.234000e+01
1.234000E+01
12.340000
12.34
12.34
占位符
说明
%s
直接输出字符串或者[]byte
%q
该值对应的双引号括起来的go语法字符串字面值,必要时会采用安全的转义表示
%x
每个字节用两字符十六进制数表示(使用a-f
%X
每个字节用两字符十六进制数表示(使用A-F)
示例代码如下:
s := "小王子"
fmt.Printf("%s\n", s)
fmt.Printf("%q\n", s)
fmt.Printf("%x\n", s)
fmt.Printf("%X\n", s)
输出结果如下:
小王子
"小王子"
e5b08fe78e8be5ad90
E5B08FE78E8BE5AD90
占位符
说明
%p
表示为十六进制,并加上前导的0x
示例代码如下:
a := 10
fmt.Printf("%p\n", &a)
fmt.Printf("%#p\n", &a)
输出结果如下:
0xc000094000
c000094000
宽度通过一个紧跟在百分号后面的十进制数指定,如果未指定宽度,则表示值时除必需之外不作填充。精度通过(可选的)宽度后跟点号后跟的十进制数指定。如果未指定精度,会使用默认精度;如果点号后没有跟数字,表示精度为0。举例如下:
占位符
说明
%f
默认宽度,默认精度
%9f
宽度9,默认精度
%.2f
默认宽度,精度2
%9.2f
宽度9,精度2
%9.f
宽度9,精度0
示例代码如下:
n := 12.34
fmt.Printf("%f\n", n)
fmt.Printf("%9f\n", n)
fmt.Printf("%.2f\n", n)
fmt.Printf("%9.2f\n", n)
fmt.Printf("%9.f\n", n)
输出结果如下:
12.340000
12.340000
12.34
12.34
12
占位符
说明
’+’
总是输出数值的正负号;对%q(%+q)会生成全部是ASCII字符的输出(通过转义);
’ ‘
对数值,正数前加空格而负数前加负号;对字符串采用%x或%X时(% x或% X)会给各打印的字节之间加空格
’-’
在输出右边填充空白而不是默认的左边(即从默认的右对齐切换为左对齐);
’#’
八进制数前加0(%#o),十六进制数前加0x(%#x)或0X(%#X),指针去掉前面的0x(%#p)对%q(%#q),对%U(%#U)会输出空格和单引号括起来的go字面值;
‘0’
使用0而不是空格填充,对于数值类型会把填充的0放在正负号后面;
举个例子:
s := "小王子"
fmt.Printf("%s\n", s)
fmt.Printf("%5s\n", s)
fmt.Printf("%-5s\n", s)
fmt.Printf("%5.7s\n", s)
fmt.Printf("%-5.7s\n", s)
fmt.Printf("%5.2s\n", s)
fmt.Printf("%05s\n", s)
输出结果如下:
小王子
小王子
小王子
小王子
小王子
小王
00小王子
Go语言fmt
包下有fmt.Scan
、fmt.Scanf
、fmt.Scanln
三个函数,可以在程序运行过程中从标准输入获取用户的输入。
函数定签名如下:
func Scan(a ...interface{}) (n int, err error)
具体代码示例如下:
func main() {
var (
name string
age int
married bool
)
fmt.Scan(&name, &age, &married)
fmt.Printf("扫描结果 name:%s age:%d married:%t \n", name, age, married)
}
将上面的代码编译后在终端执行,在终端依次输入小王子
、28
和false
使用空格分隔。
$ ./scan_demo
小王子 28 false
扫描结果 name:小王子 age:28 married:false
fmt.Scan
从标准输入中扫描用户输入的数据,将以空白符分隔的数据分别存入指定的参数。
函数签名如下:
func Scanf(format string, a ...interface{}) (n int, err error)
代码示例如下:
func main() {
var (
name string
age int
married bool
)
fmt.Scanf("1:%s 2:%d 3:%t", &name, &age, &married)
fmt.Printf("扫描结果 name:%s age:%d married:%t \n", name, age, married)
}
将上面的代码编译后在终端执行,在终端按照指定的格式依次输入小王子
、28
和false
。
$ ./scan_demo
1:小王子 2:28 3:false
扫描结果 name:小王子 age:28 married:false
fmt.Scanf
不同于fmt.Scan
简单的以空格作为输入数据的分隔符,fmt.Scanf
为输入数据指定了具体的输入内容格式,只有按照格式输入数据才会被扫描并存入对应变量。
例如,我们还是按照上个示例中以空格分隔的方式输入,fmt.Scanf
就不能正确扫描到输入的数据。
$ ./scan_demo
小王子 28 false
扫描结果 name: age:0 married:false
函数签名如下:
func Scanln(a ...interface{}) (n int, err error)
具体代码示例如下:
func main() {
var (
name string
age int
married bool
)
fmt.Scanln(&name, &age, &married)
fmt.Printf("扫描结果 name:%s age:%d married:%t \n", name, age, married)
}
将上面的代码编译后在终端执行,在终端依次输入小王子
、28
和false
使用空格分隔。
$ ./scan_demo
小王子 28 false
扫描结果 name:小王子 age:28 married:false
fmt.Scanln
遇到回车就结束扫描了,这个比较常用。
有时候我们想完整获取输入的内容,而输入的内容可能包含空格,这种情况下可以使用bufio
包来实现。示例代码如下:
func bufioDemo() {
reader := bufio.NewReader(os.Stdin) // 从标准输入生成读对象
fmt.Print("请输入内容:")
text, _ := reader.ReadString('\n') // 读到换行
text = strings.TrimSpace(text)
fmt.Printf("%#v\n", text)
}
这几个函数功能分别类似于fmt.Scan
、fmt.Scanf
、fmt.Scanln
三个函数,只不过它们不是从标准输入中读取数据而是从io.Reader
中读取数据。
func Fscan(r io.Reader, a ...interface{}) (n int, err error)
func Fscanln(r io.Reader, a ...interface{}) (n int, err error)
func Fscanf(r io.Reader, format string, a ...interface{}) (n int, err error)
这几个函数功能分别类似于fmt.Scan
、fmt.Scanf
、fmt.Scanln
三个函数,只不过它们不是从标准输入中读取数据而是从指定字符串中读取数据。
func Sscan(str string, a ...interface{}) (n int, err error)
func Sscanln(str string, a ...interface{}) (n int, err error)
func Sscanf(str string, format string, a ...interface{}) (n int, err error)
无论是软件开发的调试阶段还是软件上线之后的运行阶段,日志一直都是非常重要的一个环节,我们也应该养成在程序中记录日志的好习惯。
Go语言内置的log
包实现了简单的日志服务。本文介绍了标准库log
的基本使用。
log包定义了Logger类型,该类型提供了一些格式化输出的方法。本包也提供了一个预定义的“标准”logger,可以通过调用函数Print系列
(Print|Printf|Println)、Fatal系列
(Fatal|Fatalf|Fatalln)、和Panic系列
(Panic|Panicf|Panicln)来使用,比自行创建一个logger对象更容易使用。
例如,我们可以像下面的代码一样直接通过log
包来调用上面提到的方法,默认它们会将日志信息打印到终端界面:
package main
import (
"log"
)
func main() {
log.Println("这是一条很普通的日志。")
v := "很普通的"
log.Printf("这是一条%s日志。\n", v)
log.Fatalln("这是一条会触发fatal的日志。")
log.Panicln("这是一条会触发panic的日志。")
}
编译并执行上面的代码会得到如下输出:
2017/06/19 14:04:17 这是一条很普通的日志。
2017/06/19 14:04:17 这是一条很普通的日志。
2017/06/19 14:04:17 这是一条会触发fatal的日志。
logger会打印每条日志信息的日期、时间,默认输出到系统的标准错误。Fatal系列函数会在写入日志信息后调用os.Exit(1)。Panic系列函数会在写入日志信息后panic。
默认情况下的logger只会提供日志的时间信息,但是很多情况下我们希望得到更多信息,比如记录该日志的文件名和行号等。log
标准库中为我们提供了定制这些设置的方法。
log
标准库中的Flags
函数会返回标准logger的输出配置,而SetFlags
函数用来设置标准logger的输出配置。
func Flags() int
func SetFlags(flag int)
log
标准库提供了如下的flag选项,它们是一系列定义好的常量。
const (
// 控制输出日志信息的细节,不能控制输出的顺序和格式。
// 输出的日志在每一项后会有一个冒号分隔:例如2009/01/23 01:23:23.123123 /a/b/c/d.go:23: message
Ldate = 1 << iota // 日期:2009/01/23
Ltime // 时间:01:23:23
Lmicroseconds // 微秒级别的时间:01:23:23.123123(用于增强Ltime位)
Llongfile // 文件全路径名+行号: /a/b/c/d.go:23
Lshortfile // 文件名+行号:d.go:23(会覆盖掉Llongfile)
LUTC // 使用UTC时间
LstdFlags = Ldate | Ltime // 标准logger的初始值
)
下面我们在记录日志之前先设置一下标准logger的输出选项如下:
func main() {
log.SetFlags(log.Llongfile | log.Lmicroseconds | log.Ldate)
log.Println("这是一条很普通的日志。")
}
编译执行后得到的输出结果如下:
2017/06/19 14:05:17.494943 .../log_demo/main.go:11: 这是一条很普通的日志。
log
标准库中还提供了关于日志信息前缀的两个方法:
func Prefix() string
func SetPrefix(prefix string)
其中Prefix
函数用来查看标准logger的输出前缀,SetPrefix
函数用来设置输出前缀。
func main() {
log.SetFlags(log.Llongfile | log.Lmicroseconds | log.Ldate)
log.Println("这是一条很普通的日志。")
log.SetPrefix("[小王子]")
log.Println("这是一条很普通的日志。")
}
上面的代码输出如下:
[小王子]2017/06/19 14:05:57.940542 .../log_demo/main.go:13: 这是一条很普通的日志。
这样我们就能够在代码中为我们的日志信息添加指定的前缀,方便之后对日志信息进行检索和处理。
func SetOutput(w io.Writer)
SetOutput
函数用来设置标准logger的输出目的地,默认是标准错误输出。
例如,下面的代码会把日志输出到同目录下的xx.log
文件中。
func main() {
logFile, err := os.OpenFile("./xx.log", os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0644)
if err != nil {
fmt.Println("open log file failed, err:", err)
return
}
log.SetOutput(logFile)
log.SetFlags(log.Llongfile | log.Lmicroseconds | log.Ldate)
log.Println("这是一条很普通的日志。")
log.SetPrefix("[小王子]")
log.Println("这是一条很普通的日志。")
}
如果你要使用标准的logger,我们通常会把上面的配置操作写到init
函数中。
func init() {
logFile, err := os.OpenFile("./xx.log", os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0644)
if err != nil {
fmt.Println("open log file failed, err:", err)
return
}
log.SetOutput(logFile)
log.SetFlags(log.Llongfile | log.Lmicroseconds | log.Ldate)
}
log
标准库中还提供了一个创建新logger对象的构造函数–New
,支持我们创建自己的logger示例。New
函数的签名如下:
func New(out io.Writer, prefix string, flag int) *Logger
New创建一个Logger对象。其中,参数out设置日志信息写入的目的地。参数prefix会添加到生成的每一条日志前面。参数flag定义日志的属性(时间、文件等等)。
举个例子:
func main() {
logger := log.New(os.Stdout, "<New>", log.Lshortfile|log.Ldate|log.Ltime)
logger.Println("这是自定义的logger记录的日志。")
}
将上面的代码编译执行之后,得到结果如下:
<New>2017/06/19 14:06:51 main.go:34: 这是自定义的logger记录的日志。
Go内置的log库功能有限,例如无法满足记录不同级别日志的情况,我们在实际的项目中根据自己的需要选择使用第三方的日志库,如logrus、zap等。
Go语言内置的net/http
包十分的优秀,提供了HTTP客户端和服务端的实现。
Go语言内置的net/http
包提供了HTTP客户端和服务端的实现。
超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络传输协议,所有的WWW文件都必须遵守这个标准。设计HTTP最初的目的是为了提供一种发布和接收HTML页面的方法。
Get、Head、Post和PostForm函数发出HTTP/HTTPS请求。
resp, err := http.Get("http://example.com/")
...
resp, err := http.Post("http://example.com/upload", "image/jpeg", &buf)
...
resp, err := http.PostForm("http://example.com/form",
url.Values{"key": {"Value"}, "id": {"123"}})
程序在使用完response后必须关闭回复的主体。
resp, err := http.Get("http://example.com/")
if err != nil {
// handle error
}
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
// ...
使用net/http
包编写一个简单的发送HTTP请求的Client端,代码如下:
package main
import (
"fmt"
"io/ioutil"
"net/http"
)
func main() {
resp, err := http.Get("https://www.nickchen121.com/")
if err != nil {
fmt.Println("get failed, err:", err)
return
}
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println("read from resp.Body failed,err:", err)
return
}
fmt.Print(string(body))
}
将上面的代码保存之后编译成可执行文件,执行之后就能在终端打印nickchen121.com
网站首页的内容了,我们的浏览器其实就是一个发送和接收HTTP协议数据的客户端,我们平时通过浏览器访问网页其实就是从网站的服务器接收HTTP数据,然后浏览器会按照HTML、CSS等规则将网页渲染展示出来。
关于GET请求的参数需要使用Go语言内置的net/url
这个标准库来处理。
func main() {
apiUrl := "http://127.0.0.1:9090/get"
// URL param
data := url.Values{}
data.Set("name", "小王子")
data.Set("age", "18")
u, err := url.ParseRequestURI(apiUrl)
if err != nil {
fmt.Printf("parse url requestUrl failed,err:%v\n", err)
}
u.RawQuery = data.Encode() // URL encode
fmt.Println(u.String())
resp, err := http.Get(u.String())
if err != nil {
fmt.Println("post failed, err:%v\n", err)
return
}
defer resp.Body.Close()
b, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println("get resp failed,err:%v\n", err)
return
}
fmt.Println(string(b))
}
对应的Server端HandlerFunc如下:
func getHandler(w http.ResponseWriter, r *http.Request) {
defer r.Body.Close()
data := r.URL.Query()
fmt.Println(data.Get("name"))
fmt.Println(data.Get("age"))
answer := `{"status": "ok"}`
w.Write([]byte(answer))
}
上面演示了使用net/http
包发送GET
请求的示例,发送POST
请求的示例代码如下:
package main
import (
"fmt"
"io/ioutil"
"net/http"
"strings"
)
// net/http post demo
func main() {
url := "http://127.0.0.1:9090/post"
// 表单数据
//contentType := "application/x-www-form-urlencoded"
//data := "name=小王子&age=18"
// json
contentType := "application/json"
data := `{"name":"小王子","age":18}`
resp, err := http.Post(url, contentType, strings.NewReader(data))
if err != nil {
fmt.Println("post failed, err:%v\n", err)
return
}
defer resp.Body.Close()
b, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println("get resp failed,err:%v\n", err)
return
}
fmt.Println(string(b))
}
对应的Server端HandlerFunc如下:
func postHandler(w http.ResponseWriter, r *http.Request) {
defer r.Body.Close()
// 1. 请求类型是application/x-www-form-urlencoded时解析form数据
r.ParseForm()
fmt.Println(r.PostForm) // 打印form数据
fmt.Println(r.PostForm.Get("name"), r.PostForm.Get("age"))
// 2. 请求类型是application/json时从r.Body读取数据
b, err := ioutil.ReadAll(r.Body)
if err != nil {
fmt.Println("read request.Body failed, err:%v\n", err)
return
}
fmt.Println(string(b))
answer := `{"status": "ok"}`
w.Write([]byte(answer))
}
要管理HTTP客户端的头域、重定向策略和其他设置,创建一个Client:
client := &http.Client{
CheckRedirect: redirectPolicyFunc,
}
resp, err := client.Get("http://example.com")
// ...
req, err := http.NewRequest("GET", "http://example.com", nil)
// ...
req.Header.Add("If-None-Match", `W/"wyzzy"`)
resp, err := client.Do(req)
// ...
要管理代理、TLS配置、keep-alive、压缩和其他设置,创建一个Transport:
tr := &http.Transport{
TLSClientConfig: &tls.Config{RootCAs: pool},
DisableCompression: true,
}
client := &http.Client{Transport: tr}
resp, err := client.Get("https://example.com")
Client和Transport类型都可以安全的被多个go程同时使用。出于效率考虑,应该一次建立、尽量重用。
ListenAndServe使用指定的监听地址和处理器启动一个HTTP服务端。处理器参数通常是nil,这表示采用包变量DefaultServeMux作为处理器。
Handle和HandleFunc函数可以向DefaultServeMux添加处理器。
http.Handle("/foo", fooHandler)
http.HandleFunc("/bar", func(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "Hello, %q", html.EscapeString(r.URL.Path))
})
log.Fatal(http.ListenAndServe(":8080", nil))
使用Go语言中的net/http
包来编写一个简单的接收HTTP请求的Server端示例,net/http
包是对net包的进一步封装,专门用来处理HTTP协议的数据。具体的代码如下:
// http server
func sayHello(w http.ResponseWriter, r *http.Request) {
fmt.Fprintln(w, "Hello 沙河!")
}
func main() {
http.HandleFunc("/", sayHello)
err := http.ListenAndServe(":9090", nil)
if err != nil {
fmt.Printf("http server failed, err:%v\n", err)
return
}
}
将上面的代码编译之后执行,打开你电脑上的浏览器在地址栏输入127.0.0.1:9090
回车,此时就能够看到如下页面了。
要管理服务端的行为,可以创建一个自定义的Server:
s := &http.Server{
Addr: ":8080",
Handler: myHandler,
ReadTimeout: 10 * time.Second,
WriteTimeout: 10 * time.Second,
MaxHeaderBytes: 1 << 20,
}
log.Fatal(s.ListenAndServe())
Go语言中strconv
包实现了基本数据类型和其字符串表示的相互转换。
strconv包实现了基本数据类型与其字符串表示的转换,主要有以下常用函数:
Atoi()
、Itia()
、parse系列、format系列、append系列。
更多函数请查看官方文档。
这一组函数是我们平时编程中用的最多的。
Atoi()
函数用于将字符串类型的整数转换为int类型,函数签名如下。
func Atoi(s string) (i int, err error)
如果传入的字符串参数无法转换为int类型,就会返回错误。
s1 := "100"
i1, err := strconv.Atoi(s1)
if err != nil {
fmt.Println("can't convert to int")
} else {
fmt.Printf("type:%T value:%#v\n", i1, i1) //type:int value:100
}
Itoa()
函数用于将int类型数据转换为对应的字符串表示,具体的函数签名如下。
func Itoa(i int) string
示例代码如下:
i2 := 200
s2 := strconv.Itoa(i2)
fmt.Printf("type:%T value:%#v\n", s2, s2) //type:string value:"200"
【扩展阅读】这是C语言遗留下的典故。C语言中没有string类型而是用字符数组(array)表示字符串,所以Itoa
对很多C系的程序员很好理解。
Parse类函数用于转换字符串为给定类型的值:ParseBool()、ParseFloat()、ParseInt()、ParseUint()。
func ParseBool(str string) (value bool, err error)
返回字符串表示的bool值。它接受1、0、t、f、T、F、true、false、True、False、TRUE、FALSE;否则返回错误。
func ParseInt(s string, base int, bitSize int) (i int64, err error)
返回字符串表示的整数值,接受正负号。
base指定进制(2到36),如果base为0,则会从字符串前置判断,”0x”是16进制,”0”是8进制,否则是10进制;
bitSize指定结果必须能无溢出赋值的整数类型,0、8、16、32、64 分别代表 int、int8、int16、int32、int64;
返回的err是*NumErr类型的,如果语法有误,err.Error = ErrSyntax;如果结果超出类型范围err.Error = ErrRange。
func ParseUint(s string, base int, bitSize int) (n uint64, err error)
ParseUint
类似ParseInt
但不接受正负号,用于无符号整型。
func ParseFloat(s string, bitSize int) (f float64, err error)
解析一个表示浮点数的字符串并返回其值。
如果s合乎语法规则,函数会返回最为接近s表示值的一个浮点数(使用IEEE754规范舍入)。
bitSize指定了期望的接收类型,32是float32(返回值可以不改变精确值的赋值给float32),64是float64;
返回值err是*NumErr类型的,语法有误的,err.Error=ErrSyntax;结果超出表示范围的,返回值f为±Inf,err.Error= ErrRange。
b, err := strconv.ParseBool("true")
f, err := strconv.ParseFloat("3.1415", 64)
i, err := strconv.ParseInt("-2", 10, 64)
u, err := strconv.ParseUint("2", 10, 64)
这些函数都有两个返回值,第一个返回值是转换后的值,第二个返回值为转化失败的错误信息。
Format系列函数实现了将给定类型数据格式化为string类型数据的功能。
func FormatBool(b bool) string
根据b的值返回”true”或”false”。
func FormatInt(i int64, base int) string
返回i的base进制的字符串表示。base 必须在2到36之间,结果中会使用小写字母’a’到’z’表示大于10的数字。
func FormatUint(i uint64, base int) string
是FormatInt的无符号整数版本。
func FormatFloat(f float64, fmt byte, prec, bitSize int) string
函数将浮点数表示为字符串并返回。
bitSize表示f的来源类型(32:float32、64:float64),会据此进行舍入。
fmt表示格式:’f’(-ddd.dddd)、’b’(-ddddp±ddd,指数为二进制)、’e’(-d.dddde±dd,十进制指数)、’E’(-d.ddddE±dd,十进制指数)、’g’(指数很大时用’e’格式,否则’f’格式)、’G’(指数很大时用’E’格式,否则’f’格式)。
prec控制精度(排除指数部分):对’f’、’e’、’E’,它表示小数点后的数字个数;对’g’、’G’,它控制总的数字个数。如果prec 为-1,则代表使用最少数量的、但又必需的数字来表示f。
s1 := strconv.FormatBool(true)
s2 := strconv.FormatFloat(3.1415, 'E', -1, 64)
s3 := strconv.FormatInt(-2, 16)
s4 := strconv.FormatUint(2, 16)
func IsPrint(r rune) bool
返回一个字符是否是可打印的,和unicode.IsPrint
一样,r必须是:字母(广义)、数字、标点、符号、ASCII空格。
func CanBackquote(s string) bool
返回字符串s是否可以不被修改的表示为一个单行的、没有空格和tab之外控制字符的反引号字符串。
除上文列出的函数外,strconv
包中还有Append系列、Quote系列等函数。具体用法可查看官方文档。
时间和日期是我们编程中经常会用到的,本文主要介绍了Go语言内置的time包的基本用法。
time包提供了时间的显示和测量用的函数。日历的计算采用的是公历。
time.Time
类型表示时间。我们可以通过time.Now()
函数获取当前的时间对象,然后获取时间对象的年月日时分秒等信息。示例代码如下:
func timeDemo() {
now := time.Now() //获取当前时间
fmt.Printf("current time:%v\n", now)
year := now.Year() //年
month := now.Month() //月
day := now.Day() //日
hour := now.Hour() //小时
minute := now.Minute() //分钟
second := now.Second() //秒
fmt.Printf("%d-%02d-%02d %02d:%02d:%02d\n", year, month, day, hour, minute, second)
}
时间戳是自1970年1月1日(08:00:00GMT)至当前时间的总毫秒数。它也被称为Unix时间戳(UnixTimestamp)。
基于时间对象获取时间戳的示例代码如下:
func timestampDemo() {
now := time.Now() //获取当前时间
timestamp1 := now.Unix() //时间戳
timestamp2 := now.UnixNano() //纳秒时间戳
fmt.Printf("current timestamp1:%v\n", timestamp1)
fmt.Printf("current timestamp2:%v\n", timestamp2)
}
使用time.Unix()
函数可以将时间戳转为时间格式。
func timestampDemo2(timestamp int64) {
timeObj := time.Unix(timestamp, 0) //将时间戳转为时间格式
fmt.Println(timeObj)
year := timeObj.Year() //年
month := timeObj.Month() //月
day := timeObj.Day() //日
hour := timeObj.Hour() //小时
minute := timeObj.Minute() //分钟
second := timeObj.Second() //秒
fmt.Printf("%d-%02d-%02d %02d:%02d:%02d\n", year, month, day, hour, minute, second)
}
time.Duration
是time
包定义的一个类型,它代表两个时间点之间经过的时间,以纳秒为单位。time.Duration
表示一段时间间隔,可表示的最长时间段大约290年。
time包中定义的时间间隔类型的常量如下:
const (
Nanosecond Duration = 1
Microsecond = 1000 * Nanosecond
Millisecond = 1000 * Microsecond
Second = 1000 * Millisecond
Minute = 60 * Second
Hour = 60 * Minute
)
例如:time.Duration
表示1纳秒,time.Second
表示1秒。
我们在日常的编码过程中可能会遇到要求时间+时间间隔的需求,Go语言的时间对象有提供Add方法如下:
func (t Time) Add(d Duration) Time
举个例子,求一个小时之后的时间:
func main() {
now := time.Now()
later := now.Add(time.Hour) // 当前时间加1小时后的时间
fmt.Println(later)
}
求两个时间之间的差值:
func (t Time) Sub(u Time) Duration
返回一个时间段t-u。如果结果超出了Duration可以表示的最大值/最小值,将返回最大值/最小值。要获取时间点t-d(d为Duration),可以使用t.Add(-d)。
func (t Time) Equal(u Time) bool
判断两个时间是否相同,会考虑时区的影响,因此不同时区标准的时间也可以正确比较。本方法和用t==u不同,这种方法还会比较地点和时区信息。
func (t Time) Before(u Time) bool
如果t代表的时间点在u之前,返回真;否则返回假。
func (t Time) After(u Time) bool
如果t代表的时间点在u之后,返回真;否则返回假。
使用time.Tick(时间间隔)
来设置定时器,定时器的本质上是一个通道(channel)。
func tickDemo() {
ticker := time.Tick(time.Second) //定义一个1秒间隔的定时器
for i := range ticker {
fmt.Println(i)//每秒都会执行的任务
}
}
时间类型有一个自带的方法Format
进行格式化,需要注意的是Go语言中格式化时间模板不是常见的Y-m-d H:M:S
而是使用Go的诞生时间2006年1月2号15点04分(记忆口诀为2006 1 2 3 4)。也许这就是技术人员的浪漫吧。
补充:如果想格式化为12小时方式,需指定PM
。
func formatDemo() {
now := time.Now()
// 格式化的模板为Go的出生时间2006年1月2号15点04分 Mon Jan
// 24小时制
fmt.Println(now.Format("2006-01-02 15:04:05.000 Mon Jan"))
// 12小时制
fmt.Println(now.Format("2006-01-02 03:04:05.000 PM Mon Jan"))
fmt.Println(now.Format("2006/01/02 15:04"))
fmt.Println(now.Format("15:04 2006/01/02"))
fmt.Println(now.Format("2006/01/02"))
}
now := time.Now()
fmt.Println(now)
// 加载时区
loc, err := time.LoadLocation("Asia/Shanghai")
if err != nil {
fmt.Println(err)
return
}
// 按照指定时区和指定格式解析字符串时间
timeObj, err := time.ParseInLocation("2006/01/02 15:04:05", "2019/08/04 14:15:20", loc)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(timeObj)
fmt.Println(timeObj.Sub(now))
练习题:
Go语言对json的解析函数在encoding/json包里面,主要是编码和解码两个函数。
func Marshal(v interface{}) ([]byte, error)
Marshal函数返回v的json编码
注意:
布尔类型编码为json布尔类型。
浮点数、整数和Number类型的值编码为json数字类型。
字符串编码为json字符串。
数组和切片类型的值编码为json数组,但[]byte编码为base64编码字符串,nil切片编码为null
结构体的值编码为json对象。每一个导出字段变成该对象的一个成员,除非以下两种情况:
字段的标签是"-"
字段是空值,而其标签指定了omitempty选项
空值是false、0、””、nil指针、nil接口、长度为0的数组、切片、映射。对象默认键字符串是结构体的字段名,但可以在结构体字段的标签里指定。结构体标签值里的”json”键为键名,后跟可选的逗号和选项,举例如下:
Age int `json:"-"` // 字段被本包忽略
Name string `json:"myName"` // 字段在json里的键为"myName"
Sex int `json:"myName,omitempty"` // 字段在json里的键为"myName"且如果字段为空值将在对象中省略掉
Hobby int `json:",omitempty"`// 字段在json里的键为"Hobby"(默认值),但如果字段为空值会跳过;注意前导的逗号
“string”选项标记一个字段在编码json时应编码为字符串。它只适用于字符串、浮点数、整数类型的字段
Int64String int64 `json:",string"`
如果键名是只含有unicode字符、数字、美元符号、百分号、连字符、下划线和斜杠的非空字符串,将使用它代替字段名。
匿名的结构体字段一般序列化为他们内部的导出字段就好像位于外层结构体中一样。如果一个匿名结构体字段的标签给其提供了键名,则会使用键名代替字段名,而不视为匿名。
Go结构体字段的可视性规则用于供json决定那个字段应该序列化或反序列化时是经过修正了的。如果同一层次有多个(匿名)字段且该层次是最小嵌套的(嵌套层次则使用默认go规则),会应用如下额外规则:
1)json标签为”-“的匿名字段强行忽略,不作考虑;
2)json标签提供了键名的匿名字段,视为非匿名字段;
3)其余字段中如果只有一个匿名字段,则使用该字段;
4)其余字段中如果有多个匿名字段,但压平后不会出现冲突,所有匿名字段压平;
5)其余字段中如果有多个匿名字段,但压平后出现冲突,全部忽略,不产生错误。
对匿名结构体字段的管理是从go1.1开始的,在之前的版本,匿名字段会直接忽略掉。
Map类型的值编码为json对象。Map的键必须是字符串,对象的键直接使用映射的键。
指针类型的值编码为其指向的值(的json编码)。nil指针编码为null。
接口类型的值编码为接口内保持的具体类型的值(的json编码)。nil接口编码为null。
通道、复数、函数类型的值不能编码进json。会导致Marshal函数返回UnsupportedTypeError错误
func Unmarshal(data []byte, v interface{}) error
Unmarshal函数解析json编码的数据并将结果存入v指向的值。
Unmarshal和Marshal做相反的操作,必要时申请map、切片或指针,遵循如下规则:
要将json数据解码写入一个指针,Unmarshal函数首先处理json数据是json字面值null的情况。此时,函数将指针设为nil;否则,函数将json数据解码写入指针指向的值;如果指针本身是nil,函数会先申请一个值并使指针指向它。
要将json数据解码写入一个结构体,函数会匹配输入对象的键和Marshal使用的键(结构体字段名或者它的标签指定的键名),优先选择精确的匹配,但也接受大小写不敏感的匹配。
要将json数据解码写入一个接口类型值,函数会将数据解码为如下类型写入接口:
Bool 对应JSON布尔类型
float64 对应JSON数字类型
string 对应JSON字符串类型
[]interface{} 对应JSON数组
map[string]interface{} 对应JSON对象
nil 对应JSON的null
如果一个JSON值不匹配给出的目标类型,或者如果一个json数字写入目标类型时溢出,Unmarshal函数会跳过该字段并尽量完成其余的解码操作。如果没有出现更加严重的错误,本函数会返回一个描述第一个此类错误的详细信息的UnmarshalTypeError。
JSON的null值解码为go的接口、指针、切片时会将它们设为nil,因为null在json里一般表示“不存在”。解码json的null值到其他go类型时,不会造成任何改变,也不会产生错误。
当解码字符串时,不合法的utf-8或utf-16代理(字符)对不视为错误,而是将非法字符替换为unicode字符U+FFFD。
#示例
###Golang - 序列化结构体
package main
import (
"encoding/json"
"fmt"
)
//定义一个简单的结构体 Person
type Person struct {
Name string
Age int
Birthday string
Sex float32
Hobby string
}
//写一个 testStruct()结构体的序列化方法
func testStruct() {
person := Person{
Name: "小崽子",
Age: 50,
Birthday: "2019-09-27",
Sex: 1000.01,
Hobby: "泡妞",
}
// 将Monster结构体序列化
data, err := json.Marshal(&person)
if err != nil {
fmt.Printf("序列化错误 err is %v", err)
}
//输出序列化结果
fmt.Printf("person序列化后 = %v", string(data))
//反序列化
person2 := Person{}
json.Unmarshal(data,&person2)
fmt.Println(person2)
}
func main() {
testStruct()
}
###Golang - 序列化map
package main
import (
"encoding/json"
"fmt"
)
func testMap() {
//定义一个map
var a map[string]interface{}
//使用map之前 必须make一下
a = make(map[string]interface{})
a["name"] = "小崽子"
a["age"] = 8
a["address"] = "上海市浦东新区"
// 将a map结构体序列化
data, err := json.Marshal(a)
if err != nil {
fmt.Printf("序列化错误 err is %v", err)
}
//输出序列化结果
fmt.Printf("map序列化后 = %v", string(data))
//反序列化
var a1 map[string]interface{}
json.Unmarshal(data,&a1)
fmt.Println(a1)
}
func main() {
testMap()
}
Golang - 序列化slice
package main
import (
"encoding/json"
"fmt"
)
// slice进行序列化
func testSlice() {
var slice []map[string]interface{} // 定义了一个切片,里面是map格式 map[string]interface{}
var m1 map[string]interface{} //定义切片中的第一个map M1
m1 = make(map[string]interface{})
m1["name"] = "小崽子"
m1["age"] = 16
m1["address"] = [2]string{"上海市", "浦东新区"}
slice = append(slice, m1)
var m2 map[string]interface{} //定义切片中的第2个map M2
m2 = make(map[string]interface{})
m2["name"] = "大崽子"
m2["age"] = 36
m2["address"] = "北京市"
slice = append(slice, m2)
// 将slice进行序列化
data, err := json.Marshal(slice)
if err != nil {
fmt.Printf("序列化错误 err is %v", err)
}
//输出序列化结果
fmt.Printf("slice序列化后 = %v", string(data))
//反序列化结果
var slice2 []map[string]interface{}
json.Unmarshal(data,&slice2)
fmt.Println(slice2)
}
func main() {
testSlice()
}