1.单机多卡版本:代码中的DistributedDataParallel (DDP) 部分对应单机多卡的分布式训练方式
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import RandomHorizontalFlip, RandomVerticalFlip, RandomRotation, RandomResizedCrop, ToTensor
from torch.nn.parallel import DistributedDataParallel as DDP
# 定义ResNet块
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out += residual
out = self.relu(out)
return out
# 定义UNet模型
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1)
self.block1 = ResNetBlock(64, 64)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.block2 = ResNetBlock(128, 128)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.block3 = ResNetBlock(256, 256)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1
self.block4 = ResNetBlock(512, 512)
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(128, out_channels, kernel_size=1)
def forward(self, x):
x1 = self.conv1(x)
x1 = self.block1(x1)
x2 = self.pool1(x1)
x2 = self.conv2(x2)
x2 = self.block2(x2)
x3 = self.pool2(x2)
x3 = self.conv3(x3)
x3 = self.block3(x3)
x4 = self.pool3(x3)
x4 = self.conv4(x4)
x4 = self.block4(x4)
x = self.upconv3(x4)
x = torch.cat((x, x3), dim=1)
x = self.conv5(x)
x = self.upconv2(x)
x = torch.cat((x, x2), dim=1)
x = self.upconv1(x)
x = torch.cat((x, x1), dim=1)
x = self.conv5(x)
return x
# 定义数据集类
class CustomDataset(Dataset):
def __init__(self, data_dir, transform=None):
self.data = # Load data from data_dir
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, index):
image, mask = self.data[index]
if self.transform:
image = self.transform(image)
mask = self.transform(mask)
return image, mask
# 设置训练参数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_epochs = 10
batch_size = 4
# 创建UNet模型和优化器
model = UNet(in_channels=3, num_classes=2).to(device)
model = DDP(model)
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 定义数据增强方法
transform = transforms.Compose([
RandomHorizontalFlip(),
RandomVerticalFlip(),
RandomRotation(15),
RandomResizedCrop(256, scale=(0.8, 1.0)),
ToTensor(),
])
# 加载数据集并进行数据增强
dataset = CustomDataset(data_dir="path_to_dataset", transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4)
# 训练循环
for epoch in range(num_epochs):
model.train()
total_loss = 0.0
for images, masks in dataloader:
images = images.to(device)
masks = masks.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = nn.CrossEntropyLoss()(outputs, masks)
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {total_loss/len(dataloader)}")
2.多机多卡版本:使用torch.utils.data.distributed.DistributedSampler和torch.distributed.init_process_group来实现多机多卡的分布式训练,确保在每个进程中都有不同的数据划分和完整的通信。
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
from torchvision.transforms import transforms
from torchvision.datasets import YourDataset
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
# 定义ResNet块
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out += residual
out = self.relu(out)
return out
# 定义UNet模型
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1)
self.block1 = ResNetBlock(64, 64)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.block2 = ResNetBlock(128, 128)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.block3 = ResNetBlock(256, 256)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1
self.block4 = ResNetBlock(512, 512)
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(128, out_channels, kernel_size=1)
def forward(self, x):
x1 = self.conv1(x)
x1 = self.block1(x1)
x2 = self.pool1(x1)
x2 = self.conv2(x2)
x2 = self.block2(x2)
x3 = self.pool2(x2)
x3 = self.conv3(x3)
x3 = self.block3(x3)
x4 = self.pool3(x3)
x4 = self.conv4(x4)
x4 = self.block4(x4)
x = self.upconv3(x4)
x = torch.cat((x, x3), dim=1)
x = self.conv5(x)
x = self.upconv2(x)
x = torch.cat((x, x2), dim=1)
x = self.upconv1(x)
x = torch.cat((x, x1), dim=1)
x = self.conv5(x)
return x
# 定义数据集类
class CustomDataset(Dataset):
def __init__(self, data_dir, transform=None):
self.data = # Load data from data_dir
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, index):
image, mask = self.data[index]
if self.transform:
image = self.transform(image)
mask = self.transform(mask)
return image, mask
def main(rank, world_size):
# 设置分布式训练参数
torch.cuda.set_device(rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
# 设置训练参数
num_epochs = 10
batch_size_per_gpu = 4
# 创建UNet模型和优化器
in_channels = 3
model = UNet(in_channels=3, num_classes=2).cuda(rank)
model = DistributedDataParallel(model, device_ids=[rank])
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 数据增强方法
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(30),
transforms.RandomResizedCrop(256, scale=(0.8, 1.2)),
transforms.ToTensor()
])
# 加载训练集和验证集
train_dataset = CustomDataset(transform=transform)
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset, batch_size=batch_size_per_gpu, sampler=train_sampler)
# 训练循环
for epoch in range(num_epochs):
model.train()
total_loss = 0.0
for images, masks in train_loader:
images = images.cuda(rank)
masks = masks.cuda(rank)
# 执行前向传播和反向传播
optimizer.zero_grad()
outputs = model(images)
loss = F.binary_cross_entropy_with_logits(outputs, masks)
loss.backward()
optimizer.step()
total_loss += loss.item()
if world_size > 1:
torch.distributed.all_reduce(total_loss)
total_loss /= len(train_sampler)
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_loss:.4f}")
def main_multi_gpu():
world_size = torch.cuda.device_count()
if world_size > 1:
torch.multiprocessing.spawn(main, args=(world_size,), nprocs=world_size, join=True)
else:
main(0, 1)
if __name__ == '__main__':
main_multi_gpu()