- JavaScript 中,深拷贝(Deep Copy)和浅拷贝(Shallow Copy)
跳房子的前端
前端面试javascript开发语言ecmascript
在JavaScript中,深拷贝(DeepCopy)和浅拷贝(ShallowCopy)是用于复制对象或数组的两种不同方法。了解它们的区别和应用场景对于避免潜在的bugs和高效地处理数据非常重要。以下是对深拷贝和浅拷贝的详细解释,包括它们的概念、用途、优缺点以及实现方式。1.浅拷贝(ShallowCopy)概念定义:浅拷贝是指创建一个新的对象或数组,其中包含了原对象或数组的基本数据类型的值和对引用数
- 深度学习-点击率预估-研究论文2024-09-14速读
sp_fyf_2024
深度学习人工智能
深度学习-点击率预估-研究论文2024-09-14速读1.DeepTargetSessionInterestNetworkforClick-ThroughRatePredictionHZhong,JMa,XDuan,SGu,JYao-2024InternationalJointConferenceonNeuralNetworks,2024深度目标会话兴趣网络用于点击率预测摘要:这篇文章提出了一种新
- 探索未来,大规模分布式深度强化学习——深入解析IMPALA架构
汤萌妮Margaret
探索未来,大规模分布式深度强化学习——深入解析IMPALA架构scalable_agent项目地址:https://gitcode.com/gh_mirrors/sc/scalable_agent在当今的人工智能研究前沿,深度强化学习(DRL)因其在复杂任务中的卓越表现而备受瞩目。本文要介绍的是一个开源于GitHub的重量级项目:“ScalableDistributedDeep-RLwithImp
- 云服务业界动态简报-20180128
Captain7
一、青云青云QingCloud推出深度学习平台DeepLearningonQingCloud,包含了主流的深度学习框架及数据科学工具包,通过QingCloudAppCenter一键部署交付,可以让算法工程师和数据科学家快速构建深度学习开发环境,将更多的精力放在模型和算法调优。二、腾讯云1.腾讯云正式发布腾讯专有云TCE(TencentCloudEnterprise)矩阵,涵盖企业版、大数据版、AI
- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- 报错 | pydantic.v1.error_wrappers.ValidationError ... subclass of BaseModel expected
程序猿林仔
报错pythonpythonlangchain
文章目录01问题情景02分析问题03阅读源码04解决方案4.1方案1-指定版本安装4.2(通用)方案2-指定v1版本4.3(推荐)方案3-参考源码01问题情景最近在做Langchain的开发,可能是因为我更新了依赖库的版本,在执行下面这部分代码的时候出现了该异常:#出现该异常的代码(仅保留核心逻辑)fromlangchain.output_parsersimportPydanticOutputPa
- 【NLP5-RNN模型、LSTM模型和GRU模型】
一蓑烟雨紫洛
nlprnnlstmgrunlp
RNN模型、LSTM模型和GRU模型1、什么是RNN模型RNN(RecurrentNeuralNetwork)中文称为循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出RNN的循环机制使模型隐层上一时间步产生的结果,能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响2、R
- el-dialog高度设置
夏之小星星
前端vue.jselementuicss
el-dialog高度设置::v-deep.el-dialog{height:78vh;overflow:auto;}
- JAVA常用校验注解
小卡车555
java
引入依赖org.springframeworkspring-boot-starter-validation2.6.13相关注解及使用说明注解描述@AssertFalse所注解的元素必须是Boolean类型,且值为false@AssertTrue所注解的元素必须是Boolean类型,且值为true@DecimalMin验证Number和String对象是否大于等于指定的值,支持小数@DecimalM
- elementuiPlus取消el-input的边框
qq_39016177
elementui
elementuiPlus取消el-input的边框1.通常取消边框的方法设置border为none2.还有其他类似边框的例如outlinebox-shadow这两个属性都是会产生边框效果3.el-input需要更改的话–如下需要修改box-shadow为空即可上代码:deep(.el-input__wrapper){align-items:center;background-color:#F7F
- 【双语新闻】AGI安全与对齐,DeepMind近期工作
曲奇人工智能安全
agi安全llama人工智能
我们想与AF社区分享我们最近的工作总结。以下是关于我们正在做什么,为什么会这么做以及我们认为它的意义所在的一些详细信息。我们希望这能帮助人们从我们的工作基础上继续发展,并了解他们的工作如何与我们相关联。byRohinShah,SebFarquhar,AncaDragan21stAug2024AIAlignmentForumWewantedtosharearecapofourrecentoutput
- 测者的测试技术手册:Junit执行单元测试用例成功,mvn test却失败的问题和解决方法
Criss陈磊
今天遇见了一个奇怪的问题,在IDE中rununittest,全部cases都成功了,但是后来通过mvntest运行case确保错了。在寻求原因的同时也找到了对应的解决方法。RunUnitTest和Maventest的区别差异1:在IDE中通过选中单元测试路径,点击右键选择runtest和点击maven中的test是有区别的。在Maven执行测试的过程中,是不允许测试cases访问其他项目的测试类和
- 探索深度学习的奥秘:从理论到实践的奇幻之旅
小周不想卷
深度学习
目录引言:穿越智能的迷雾一、深度学习的奇幻起源:从感知机到神经网络1.1感知机的启蒙1.2神经网络的诞生与演进1.3深度学习的崛起二、深度学习的核心魔法:神经网络架构2.1前馈神经网络(FeedforwardNeuralNetwork,FNN)2.2卷积神经网络(CNN)2.3循环神经网络(RNN)及其变体(LSTM,GRU)2.4生成对抗网络(GAN)三、深度学习的魔法秘籍:算法与训练3.1损失
- CycleGAN学习:Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2017.
屎山搬运工
深度学习CycleGANGAN风格迁移
【导读】图像到图像的转换技术一般需要大量的成对数据,然而要收集这些数据异常耗时耗力。因此本文主要介绍了无需成对示例便能实现图像转换的CycleGAN图像转换技术。文章分为五部分,分别概述了:图像转换的问题;CycleGAN的非成对图像转换原理;CycleGAN的架构模型;CycleGAN的应用以及注意事项。图像到图像的转换涉及到生成给定图像的新的合成版本,并进行特定的修改,例如将夏季景观转换为冬季
- arXiv综述论文“Graph Neural Networks: A Review of Methods and Applications”
硅谷秋水
自动驾驶
arXiv于2019年7月10日上载的GNN综述论文“GraphNeuralNetworks:AReviewofMethodsandApplications“。摘要:许多学习任务需要处理图数据,该图数据包含元素之间的丰富关系信息。建模物理系统、学习分子指纹、预测蛋白质界面以及对疾病进行分类都需要一个模型从图输入学习。在其他如文本和图像之类非结构数据学习的领域中,对提取的结构推理,例如句子的依存关系
- C# 网口通信(通过Sockets类)
萨达大
c#服务器网络网口通讯上位机
文章目录1.引入Sockets2.定义TcpClient3.连接网口4.发送数据5.关闭连接1.引入SocketsusingSystem.Net.Sockets;2.定义TcpClientprivateTcpClienttcpClient;//TcpClient实例privateNetworkStreamstream;//网络流,用于与服务器通信3.连接网口tcpClient=newTcpClie
- TextCNN:文本卷积神经网络模型
一只天蝎
编程语言---Pythoncnn深度学习机器学习
目录什么是TextCNN定义TextCNN类初始化一个model实例输出model什么是TextCNNTextCNN(TextConvolutionalNeuralNetwork)是一种用于处理文本数据的卷积神经网(CNN)。通过在文本数据上应用卷积操作来提取局部特征,这些特征可以捕捉到文本中的局部模式,如n-gram(连续的n个单词或字符)。定义TextCNN类importtorch.nnasn
- [Kaiming]Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
MTandHJ
neuralnetworks
文章目录概主要内容PReLUKaiming初始化ForwardcaseBackwardcaseHeK,ZhangX,RenS,etal.DelvingDeepintoRectifiers:SurpassingHuman-LevelPerformanceonImageNetClassification[C].internationalconferenceoncomputervision,2015:1
- Java项目中参数校验方法
DebugDiver代码深处潜水员
项目相关javapython开发语言
Java项目中参数校验方法1.参数校验的重要性2.常见的参数校验方法2.1使用`assert`关键字2.2使用`Objects.requireNonNull`2.3使用自定义异常2.4使用`Preconditions`类2.5使用HibernateValidator注解2.6使用Spring框架内的验证2.7使用JSR303/349(BeanValidation)2.8使用ApacheCommon
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 前端开发需要了解的算法知识
史努比的大头
算法前端
手写深拷贝functiondeepClone(obj){//处理基础数据类型和函数if(obj===null||typeofobj!=='object'){returnobj;}//处理数组if(Array.isArray(obj)){returnobj.map(item=>deepClone(item));}//处理对象constclonedObj={};for(constkeyinobj){i
- 推荐开源项目:PyTorch-Metric-Learning
潘惟妍
推荐开源项目:PyTorch-Metric-Learningpytorch-metric-learningTheeasiestwaytousedeepmetriclearninginyourapplication.Modular,flexible,andextensible.WritteninPyTorch.项目地址:https://gitcode.com/gh_mirrors/py/pytorc
- Centos9 网卡配置文件
码哝小鱼
linux运维linux网络
1、Centosstream9网络介结Centos以前版本,NetworkManage以ifcfg格式存储网络配置文件在/etc/sysconfig/networkscripts/目录中。但是,Centossteam9现已弃用ifcfg格式,默认情况下,NetworkManage不再创建此格式的新配置文件。从Centossteam9开始采用密钥文件格式(基于INI文件),NetworkManage
- LLM系列(4):通义千问7B在Swift/DeepSpeed上微调秘诀与实战陷阱避坑指南
汀、人工智能
LLM工业级落地实践人工智能自然语言处理promptSwifiDeepSpeed通义千问Qwen
LLM系列(4):通义千问7B在Swift/DeepSpeed上微调秘诀与实战陷阱避坑指南阿里云于2023年8月3日开源通义千问70亿参数模型,包括通用模型Qwen-7B以及对话模型Qwen-7B-Chat,这也是国内首个开源自家大模型的大厂。在诸多权威大模型能力测评基准上,如MMLU、C-Eval、GSM8K、HumanEval、WMT22,通义千问7B均取得了同参数级别开源模型中的最好表现,
- 使用C++编写接口调用PyTorch模型,并生成DLL供.NET使用
编程日记✧
pytorch人工智能python.netc#c++
一、将PyTorch模型保存为TorchScript格式1)构造一个pytorch2TorchScript.py,示例代码如下:importtorchimporttorch.nnasnnimportargparsefromnetworks.seg_modelingimportmodelasViT_segfromnetworks.seg_modelingimportCONFIGSasCONFIGS_
- 【Python机器学习】循环神经网络(RNN)——传递数据并训练
zhangbin_237
Python机器学习机器学习pythonrnn人工智能开发语言深度学习神经网络
与其他Keras模型一样,我们需要向.fit()方法传递数据,并告诉它我们希望训练多少个训练周期(epoch):model.fit(X_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(X_test,y_test))因为个人小电脑内存不足,所以吧maxlen参数改成了100重新运行。保存模型:model_struc
- 深度学习算法在图算法中的应用(图卷积网络GCN和图自编码器GAE)
大嘤三喵军团
深度学习算法网络
深度学习算法在图算法中的应用1.图卷积网络(GraphConvolutionalNetworks,GCN)图卷积网络(GCN)是一种将卷积神经网络(ConvolutionalNeuralNetworks,CNN)推广到图结构数据的方法。GCN被广泛用于节点分类、图分类、链接预测等任务。优势和好处灵活性:GCN可以处理不规则和不均匀的数据结构,比如社交网络、分子结构、交通网络等。高效性:GCN使用局
- linux查看jupyter运行,在Linux服务器上运行Jupyter notebook server教程
天启大烁哥
在Linux服务器上运行Jupyternotebookserver教程很多deeplearning教程都推荐在jupyternotebook运行python代码,方便及时交互。但只在本地运行没有GPU环境,虽然googlecolab是个好办法,但发现保存模型后在云端找不到模型文件,且需要合理上网才能访问。于是想给实验室的服务器配置jupyternotebook,供本机远程访问。踩了不少坑,码一下教
- Java开发中的常用字段校验注解
呢喃coding
Javajavawindowspython
在Java开发中,数据校验是确保应用程序的数据完整性和一致性的重要步骤。Java提供了一系列注解来简化数据校验的过程,以下是一些常用的字段校验注解及其示例代码:@NotNull@NotNull用于确保字段不为null,适用于任何类型的字段,包括基本数据类型和对象引用。importjavax.validation.constraints.NotNull;publicclassExample{@Not
- 加载pkl文件,Python报错AttributeError: Can‘t get attribute ‘DeepFM‘ on <module ‘__main__‘ from...>
Zerol_Yan
Python基础python
背景模型同学发过来的pkl格式的模型,在系统中加载的时候,报错AttributeError:module'__main__'hasnoattribute'LabelEncoderExt',尝试了很多种方式,最后终于解决了这个问题,记录一下,以后遇到类似的可以做参考。项目代码及结构app.pyfrominitimportappimportjsonfromflaskimportrequest@app.
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR