分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency
)、可用性(Availability
)和分区容错性(Partition tolerance
),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。
在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。在单机环境中,Java中其实提供了很多并发处理相关的API,但是这些API在分布式场景中就无能为力了。也就是说单纯的Java Api并不能提供分布式锁的能力,所以针对分布式锁的实现目前有多种方案。
针对分布式锁的实现,目前常用的有以下几种方案:
1.基于数据库表
要实现分布式锁,最简单的方式可能就是直接创建一张锁表,然后通过操作该表中的数据来实现了。
当我们要锁住某个方法或资源时,我们就在该表中增加一条记录,想要释放锁的时候就删除这条记录。
insert into methodLock(method_name, desc) values ('method_name', 'desc')
由于已对method_name做了唯一性约束,这里如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。
delete from methodLock where method_name = 'method_name'
这种实现存在一些问题
解决办法:
2.基于数据库排它锁
除了可以通过增删操作数据表中的记录以外,其实还可以借助数据中自带的锁来实现分布式的锁。
查询语句后面增加for update,数据库会在查询过程中给数据库表增加排他锁。可以认为获得排它锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,再通过以下方法解锁:
通过connection.commit()操作来释放锁。
这种方法可以有效的解决上面提到的无法释放锁和阻塞锁的问题。
阻塞锁? for update语句会在执行成功后立即返回,在执行失败时一直处于阻塞状态,直到成功。
锁定之后服务宕机,无法释放?使用这种方式,服务宕机之后数据库会自己把锁释放掉。
缺点
数据的建立会消耗资源,效率低下,而且从安全和规范操作上,数据库禁止使用for update 是比较常见的方案。
3.总结
使用数据库来实现分布式锁的方式,这两种方式都是依赖数据库的一张表,一种是通过表中的记录的存在情况确定当前是否有锁存在,另外一种是通过数据库的排它锁来实现分布式锁。
相比较于基于数据库实现分布式锁的方案来说,基于缓存来实现在性能方面会表现的更好一点,而且很多缓存是可以集群部署的,可以解决单点问题。
目前有很多成熟的缓存产品,包括Redis,memcached以及我们公司内部的Tair。
以上实现方式同样存在几个问题:
put
操作。当然有方式可以解决
put
方法支持传入失效时间,到达时间之后数据会自动删除。但是,失效时间我设置多长时间为好?如何设置的失效时间太短,方法没等执行完,锁就自动释放了,那么就会产生并发问题。如果设置的时间太长,其他获取锁的线程就可能要平白的多等一段时间。这个问题使用数据库实现分布式锁同样存在。
总结
可以使用缓存来代替数据库来实现分布式锁,这个可以提供更好的性能,同时,很多缓存服务都是集群部署的,可以避免单点问题。并且很多缓存服务都提供了可以用来实现分布式锁的方法,比如Tair的put方法,redis的setnx方法等。并且,这些缓存服务也都提供了对数据的过期自动删除的支持,可以直接设置超时时间来控制锁的释放。
性能好,实现起来较为方便
通过超时时间来控制锁的失效时间并不是十分的靠谱。
【可以重点看下Redis实现分布式锁的方式】
chubby
大家搜索ZK的时候,会发现他们都写了ZK是Chubby的开源实现,Chubby内部工作原理和ZK类似。但是Chubby的定位是分布式锁和ZK有点不同。Chubby也是使用上面自增序列的方案用来解决分布式不安全的问题,但是他提供了多种校验方法。
ZooKeeper是以Paxos算法为基础分布式应用程序协调服务。Zk的数据节点和文件目录类似,所以我们可以用此特性实现分布式锁。我们以某个资源为目录,然后这个目录下面的节点就是我们需要获取锁的客户端,未获取到锁的客户端注册需要注册Watcher到上一个客户端,可以用下图表示。
基于zookeeper临时有序节点可以实现分布式锁
大致思想:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可下。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。
分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency
)、可用性(Availability
)和分区容错性(Partition tolerance
),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。
在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。在单机环境中,Java中其实提供了很多并发处理相关的API,但是这些API在分布式场景中就无能为力了。也就是说单纯的Java Api并不能提供分布式锁的能力,所以针对分布式锁的实现目前有多种方案。
针对分布式锁的实现,目前常用的有以下几种方案:
1.基于数据库表
要实现分布式锁,最简单的方式可能就是直接创建一张锁表,然后通过操作该表中的数据来实现了。
当我们要锁住某个方法或资源时,我们就在该表中增加一条记录,想要释放锁的时候就删除这条记录。
insert into methodLock(method_name, desc) values ('method_name', 'desc')
由于已对method_name做了唯一性约束,这里如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。
delete from methodLock where method_name = 'method_name'
这种实现存在一些问题
解决办法:
2.基于数据库排它锁
除了可以通过增删操作数据表中的记录以外,其实还可以借助数据中自带的锁来实现分布式的锁。
查询语句后面增加for update,数据库会在查询过程中给数据库表增加排他锁。可以认为获得排它锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,再通过以下方法解锁:
通过connection.commit()操作来释放锁。
这种方法可以有效的解决上面提到的无法释放锁和阻塞锁的问题。
阻塞锁? for update语句会在执行成功后立即返回,在执行失败时一直处于阻塞状态,直到成功。
锁定之后服务宕机,无法释放?使用这种方式,服务宕机之后数据库会自己把锁释放掉。
缺点
数据的建立会消耗资源,效率低下,而且从安全和规范操作上,数据库禁止使用for update 是比较常见的方案。
3.总结
使用数据库来实现分布式锁的方式,这两种方式都是依赖数据库的一张表,一种是通过表中的记录的存在情况确定当前是否有锁存在,另外一种是通过数据库的排它锁来实现分布式锁。
相比较于基于数据库实现分布式锁的方案来说,基于缓存来实现在性能方面会表现的更好一点,而且很多缓存是可以集群部署的,可以解决单点问题。
目前有很多成熟的缓存产品,包括Redis,memcached以及我们公司内部的Tair。
以上实现方式同样存在几个问题:
put
操作。当然有方式可以解决
put
方法支持传入失效时间,到达时间之后数据会自动删除。但是,失效时间我设置多长时间为好?如何设置的失效时间太短,方法没等执行完,锁就自动释放了,那么就会产生并发问题。如果设置的时间太长,其他获取锁的线程就可能要平白的多等一段时间。这个问题使用数据库实现分布式锁同样存在。
总结
可以使用缓存来代替数据库来实现分布式锁,这个可以提供更好的性能,同时,很多缓存服务都是集群部署的,可以避免单点问题。并且很多缓存服务都提供了可以用来实现分布式锁的方法,比如Tair的put方法,redis的setnx方法等。并且,这些缓存服务也都提供了对数据的过期自动删除的支持,可以直接设置超时时间来控制锁的释放。
性能好,实现起来较为方便
通过超时时间来控制锁的失效时间并不是十分的靠谱。
【可以重点看下Redis实现分布式锁的方式】
chubby
大家搜索ZK的时候,会发现他们都写了ZK是Chubby的开源实现,Chubby内部工作原理和ZK类似。但是Chubby的定位是分布式锁和ZK有点不同。Chubby也是使用上面自增序列的方案用来解决分布式不安全的问题,但是他提供了多种校验方法。
ZooKeeper是以Paxos算法为基础分布式应用程序协调服务。Zk的数据节点和文件目录类似,所以我们可以用此特性实现分布式锁。我们以某个资源为目录,然后这个目录下面的节点就是我们需要获取锁的客户端,未获取到锁的客户端注册需要注册Watcher到上一个客户端,可以用下图表示。
基于zookeeper临时有序节点可以实现分布式锁
大致思想:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可下。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。
总结
上面几种方式,哪种方式都无法做到完美。就像CAP一样,在复杂性、可靠性、性能等方面无法同时满足,所以,根据不同的应用场景选择最适合自己的才是王道。
总结
上面几种方式,哪种方式都无法做到完美。就像CAP一样,在复杂性、可靠性、性能等方面无法同时满足,所以,根据不同的应用场景选择最适合自己的才是王道。