【计算几何】判断一个点是否在多边形内部

目录

判断方法思路汇总

引射线法

算法思路

原文链接

特殊情况

解决方案

Code


判断方法思路汇总

注:本文属转载

(1)面积和判别法:判断目标点与多边形的每条边组成的三角形面积和是否等于该多边形,相等则在多边形内部。
(2)夹角和判别法:判断目标点与所有边的夹角和是否为360度,为360度则在多边形内部。
(3)引射线法:从目标点出发引一条射线,看这条射线和多边形所有边的交点数目。如果有奇数个交点,则说明在内部,如果有偶数个交点,则说明在外部。

具体做法:将测试点的Y坐标与多边形的每一个点进行比较,会得到一个测试点所在的行与多边形边的交点的列表。在下图的这个例子中有8条边与测试点所在的行相交,而有6条边没有相交。如果测试点的两边点的个数都是奇数个则该测试点在多边形内,否则在多边形外。在这个例子中测试点的左边有5个交点,右边有三个交点,它们都是奇数,所以点在多边形内。

引射线法
算法图解:
这里写图片描述

引射线法

算法思路

原文链接

判断一个点是否在多边形内部 [1] 射线法思路、
判断一个点是否在多边形内部 [2] 射线法实现

比如说,我就随便涂了一个多边形和一个点,现在我要给出一种通用的方法来判断这个点是不是在多边形内部(别告诉我用肉眼观察……)。

这里写图片描述

首先想到的一个解法是从这个点做一条射线,计算它跟多边形边界的交点个数,如果交点个数为奇数,那么点在多边形内部,否则点在多边形外。

这里写图片描述

这个结论很简单,那它是怎么来的?下面就简单讲解一下。

首先,对于平面内任意闭合曲线,我们都可以直观地认为,曲线把平面分割成了内、外两部分,其中“内”就是我们所谓的多边形区域。

这里写图片描述

基于这一认识,对于平面内任意一条直线,我们可以得出下面这些结论:

直线穿越多边形边界时,有且只有两种情况:进入多边形或穿出多边形。
在不考虑非欧空间的情况下,直线不可能从内部再次进入多边形,或从外部再次穿出多边形,即连续两次穿越边界的情况必然成对。
直线可以无限延伸,而闭合曲线包围的区域是有限的,因此最后一次穿越多边形边界,一定是穿出多边形,到达外部。

你可能感兴趣的:(算法,计算几何,计算几何)