LiteOs实验

任务一 体验任务的创建与切换
实验内容
本实验中将创建两个任务,一个低优先级任务task1,一个高优先级任务task2,两个任务都会每隔2s在串口打印自己的任务id号,在串口终端中观察两个任务的运行情况。

实验代码
首先打开之前创建的 HelloWorld 工程,基于此工程进行实验。

在Demo文件夹右击,选择新建文件夹:
YQ63GEYE6PCHRAX5(@3LMER.png

新建osal_kernel_demo文件夹,用于存放内核的实验文件:
image.png

接下来在此osal_kernel_demo文件夹中新建第一个实验文件osal_task_demo.c文件,开始编写代码:
image.png
/* 使用osal接口需要包含该头文件 */
#include 

/* 任务优先级宏定义(shell任务的优先级为10) */
#define USER_TASK1_PRI  12  //低优先级
#define USER_TASK2_PRI  11  //高优先级

/* 任务ID */
uint32_t user_task1_id = 0;
uint32_t user_task2_id = 0;

/* 任务task1入口函数 */
static int user_task1_entry()
{
    int n = 0;

    /* 每隔2s在串口打印一次,打印5次后主动结束 */
    for(n = 0; n < 5; n++)
    {
        printf("task1: my task id is %ld, n = %d!\r\n", user_task1_id, n);

        /* 任务主动挂起2s */
        osal_task_sleep(2*1000);
    }

    printf("user task 1 exit!\r\n");

    /* 任务结束 */
    return 0;
}
/* 任务task2入口函数 */
static int user_task2_entry()
{
    /* 每隔2s在串口打印一次,不结束 */
    while (1)
    {
        printf("task 2: my task id is %ld!\r\n", user_task2_id);
        
        /* 任务主动挂起2s */
        osal_task_sleep(2*1000);
    }
}

/* 标准demo启动函数,函数名不要修改,否则会影响下一步实验 */
int standard_app_demo_main()
{
    /* 创建任务task1 */
    user_task1_id = osal_task_create("user_task1",user_task1_entry,NULL,0x400,NULL,USER_TASK1_PRI);

    /* 创建任务task2 */
    user_task2_id = osal_task_create("user_task2",user_task2_entry,NULL,0x400,NULL,USER_TASK2_PRI);

    return 0;
}

编写完成之后,要将我们编写的osal_task_demo.c文件添加到makefile中,加入整个工程的编译:

这里有个较为简单的方法,直接修改Demo文件夹下的user_demo.mk配置文件,添加如下代码:

#example for osal_task_demo
    ifeq ($(CONFIG_USER_DEMO), "osal_task_demo")    
        user_demo_src  = ${wildcard $(TOP_DIR)/targets/STM32L431_BearPi/Demos/osal_kernel_demo/osal_task_demo.c}
        user_demo_defs = -D CONFIG_OSAL_TASK_DEMO_ENABLE=1
    endif

添加位置如图:
image.png

之后在工程根目录下的.sdkconfig文件中的末尾进行配置:
image.png
image.png

因为我们修改了mk配置文件,所以点击重新编译按钮
image.png

进行编译,编译完成后点击下载按钮烧录程序。

实验现象

程序烧录之后,即可看到程序已经开始运行,在串口终端中可看到实验的输出内容:
ST76NVR%1UI1M$H)FN}QPSV.png

可以看到,系统启动后,首先打印版本号,串口shell的优先级为10,最先打印shell信息,接下来task1先创建,但是优先级较低,所以后创建的task2抢占执行,task2打印后主动挂起2s,这时task1开始执行,依次执行5次后task1结束,task2一直保持运行。
image.png

任务二 LiteOS的互斥锁
实验内容
本实验中将创建两个任务,一个低优先级任务task1,一个高优先级任务task2,两个任务之间依次对共享资源上锁、操作、解锁,在串口终端中观察两个任务的运行情况。

实验代码
首先打开上一篇使用的 HelloWorld 工程,基于此工程进行实验。

在Demo文件夹右击,新建文件夹osal_kernel_demo用于存放内核的实验文件(如果已有请忽略这一步)。

接下来在此文件夹中新建一个实验文件 osal_mutex_demo.c,开始编写代码:
image.png
/* 使用osal接口需要包含该头文件 */
#include 

/* 任务优先级宏定义(shell任务的优先级为10) */
#define USER_TASK1_PRI  12  //低优先级
#define USER_TASK2_PRI  11  //高优先级

/* 共享资源 */
uint32_t public_value = 0;

/* 互斥锁索引ID */
osal_mutex_t public_value_mutex;

/* 任务task1入口函数 */
static int user_task1_entry()
{
    while(1)
    {
        /* 尝试获取互斥锁 */
        if(true == osal_mutex_lock(public_value_mutex))
        {
            /* 获取到互斥锁,对共享资源进行操作 */
            printf("\r\ntask1: lock a mutex.\r\n");
            public_value += 10;
            printf("task1: public_value = %ld.\r\n", public_value);

            /* 对共享资源操作完毕,释放互斥锁 */
            printf("task1: unlock a mutex.\r\n\r\n");
            osal_mutex_unlock(public_value_mutex);

            /* 满足条件则结束任务 */
            if(public_value > 100)
                break;
            
        }
    }

    /* while(1)会执行结束,所以需要返回值 */
    return 0;
}

/* 任务task2入口函数 */
static int user_task2_entry()
{
    while (1)
    {
        /* 尝试获取互斥锁 */
       if(true == osal_mutex_lock(public_value_mutex))
        {
            /* 获取到互斥锁,对共享资源进行操作 */
            printf("\r\ntask2: lock a mutex.\r\n");
            public_value += 5; 
            printf("task2: public_value = %ld.\r\n", public_value);

            /* 对共享资源操作完毕,释放互斥锁 */
            printf("task2: unlock a mutex.\r\n\r\n");
            osal_mutex_unlock(public_value_mutex);
            
            /* 满足条件则结束任务 */
            if(public_value > 90)
                break;
            /* 优先级较高,需要挂起一下,让task1获取到互斥锁,否则task2再次上锁,形成死锁 */
            osal_task_sleep(10);
        }
    }

    /* while(1)会执行结束,所以需要返回值 */
    return 0;
}

/* 标准demo启动函数,函数名不要修改,否则会影响下一步实验 */
int standard_app_demo_main()
{
    /* 创建互斥锁public_value_mutex */
    osal_mutex_create(&public_value_mutex);

    /* 创建任务task1 */
    osal_task_create("user_task1",user_task1_entry,NULL,0x400,NULL,USER_TASK1_PRI);

    /* 创建任务task2 */
    osal_task_create("user_task2",user_task2_entry,NULL,0x400,NULL,USER_TASK2_PRI);

    return 0;
}

编写完成之后,要将我们编写的 osal_mutex_demo.c文件添加到makefile中,加入整个工程的编译:

这里有个较为简单的方法,直接修改Demo文件夹下的user_demo.mk配置文件,添加如下代码:

#example for osal_mutex_demo
ifeq ($(CONFIG_USER_DEMO), "osal_mutex_demo")   
    user_demo_src  = ${wildcard $(TOP_DIR)/targets/STM32L431_BearPi/Demos/osal_kernel_demo/osal_mutex_demo.c}
endif

添加位置如图:

image.png

这段代码的意思是:

如果 CONFIG_USER_DEMO 宏定义的值是osal_mutex_demo,则将osal_mutex_demo.c文件加入到makefile中进行编译。

那么,如何配置 CONFIG_USER_DEMO 宏定义呢?在工程根目录下的.sdkconfig文件中的末尾即可配置:
image.png

因为我们修改了mk配置文件,所以点击重新编译按钮进行编译,编译完成后点击下载按钮烧录程序。

实验现象

程序烧录之后,即可看到程序已经开始运行,在串口终端中可看到实验的输出内容:
ZI7RTUA4LGPM)0_1(_G4V`5.png

可以看到,系统启动后,首先打印版本号,串口shell的优先级为10,最先打印shell信息,接下来task1先创建,但是优先级较低,所以后创建的task2抢占执行,task2获取到互斥锁,对共享资源进行操作,操作完毕解锁,然后主动挂起,task1获取到互斥锁,对共享资源进行另一个操作,操作完毕解锁,在task1操作的时候,task2早已挂起完毕,但是获取不到互斥锁,所以挂起等待,在task1解锁后,堵塞的task2被唤醒开始执行。

  1. 任务三 测试动态内存分配的最大字节
    实验内容
    本实验中将创建一个任务,从最小字节开始,不停的申请分配内存,释放分配的内存,直到申请失败,串口终端中观察可以申请到的最大字节。

实验代码
首先打开上一篇使用的 HelloWorld 工程,基于此工程进行实验。

在Demo文件夹右击,新建文件夹osal_kernel_demo用于存放内核的实验文件(如果已有请忽略这一步)。

接下来在此文件夹中新建一个实验文件 osal_mem_demo.c,开始编写代码:

image.png
/* 使用osal接口需要包含该头文件 */
#include 

/* 任务入口函数 */
static int mem_access_task_entry()
{
    uint32_t i = 0;     //循环变量
    size_t mem_size;    //申请的内存块大小
    uint8_t* mem_ptr = NULL;    //内存块指针

    while (1)
    {
        /* 每次循环将申请内存的大小扩大一倍 */
        mem_size = 1 << i++;

        /* 尝试申请分配内存 */
        mem_ptr = osal_malloc(mem_size);

        /* 判断是否申请成功 */
        if(mem_ptr != NULL)
        {
            /* 申请成功,打印信息 */
            printf("access %d bytes memory success!\r\n", mem_size);

            /* 释放申请的内存,便于下次申请 */
            osal_free(mem_ptr);

            /* 将内存块指针置为NULL,避免称为野指针 */
            mem_ptr = NULL;

            printf("free memory success!\r\n");
           
        }
        else
        {
            /* 申请失败,打印信息,任务结束 */
            printf("access %d bytes memory failed!\r\n", mem_size);
            return 0;
        }
    }
}

/* 标准demo启动函数,函数名不要修改,否则会影响下一步实验 */
int standard_app_demo_main()
{
    /* 创建任务,任务优先级为11,shell任务的优先级为10 */
    osal_task_create("mem_access_task",mem_access_task_entry,NULL,0x400,NULL,11);
    return 0;
}

编写完成之后,要将我们编写的 osal_mem_demo.c文件添加到makefile中,加入整个工程的编译:

这里有个较为简单的方法,直接修改Demo文件夹下的user_demo.mk配置文件,添加如下代码:

#example for osal_mem_demo
ifeq ($(CONFIG_USER_DEMO), "osal_mem_demo") 
    user_demo_src  = ${wildcard $(TOP_DIR)/targets/STM32L431_BearPi/Demos/osal_kernel_demo/osal_mem_demo.c}
endif

添加位置如图:
image.png

这段代码的意思是:

如果 CONFIG_USER_DEMO 宏定义的值是osal_mem_demo,则将osal_mem_demo.c文件加入到makefile中进行编译。

那么,如何配置 CONFIG_USER_DEMO 宏定义呢?在工程根目录下的.sdkconfig文件中的末尾即可配置:
image.png

因为我们修改了mk配置文件,所以点击重新编译按钮进行编译,编译完成后点击下载按钮烧录程序。

实验现象
程序烧录之后,即可看到程序已经开始运行,在串口终端中可看到实验的输出内容:![{[1_AY6Q$I)RWZ{~WF97_1.png

可以看到,系统启动后,首先打印版本号,串口shell的优先级为10,最先打印shell信息,接下来内存申请任务创建开始执行,在该芯片上最大能申请的空间为 16384 字节。

你可能感兴趣的:(LiteOs实验)