- 千亿级消息引擎 Apache Pulsar 深度剖析:架构原理、设计哲学与实战实践
北漂老男人
Pulsarapache架构学习方法运维
千亿级消息引擎ApachePulsar深度剖析:架构原理、设计哲学与实战实践Pulsar不止是消息队列,更是下一代云原生流平台。本文将深入剖析其底层架构、核心特性、关键差异、源码细节、调优技巧与企业级实践路径,力求做到“知其然,知其所以然”。一、架构哲学:分层解耦+IO隔离1.1三层架构模型(Broker+BookKeeper+ZooKeeper)Pulsar基于分布式系统经典设计范式:计算与存储
- JavaScript 常见的设计模式
YuLong~W
JavaScriptjavascriptjava设计模式开发语言前端
文章目录设计模式工厂模式简单工厂抽象工厂单例模式装饰器模式代理模式观察者模式(发布-订阅模式)设计模式设计模式:设计模式是解决某个特定场景下对某种问题的解决方案。因此,当我们遇到合适的场景时,可能会条件反射一样自然而然想到符合这种场景的设计模式。为什么要学习设计模式:设计模式来源众多专家的经验和智慧,它们是从许多优秀的软件系统中总结出的成功的、能够实现可维护性、复用的设计方案,使用这些方案将可以让
- C语言的一课一得
awanj
c语言java开发语言
第一课:C语言基础环境搭建与第一个程序收获知识:了解了C语言的发展历程和广泛应用领域,知晓其在系统软件、嵌入式开发等多方面的重要性。掌握了C语言开发环境的搭建,如安装VisualStudioCode并配置MinGW编译器,或使用其他常见的集成开发环境(IDE),如Dev-C++等,为后续代码编写奠定基础。学会编写并成功运行第一个C语言程序“Hello,World!”,理解了main函数作为程序入口
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- 二进制部署Kubernetes1.32.4最新版本高可用集群及附加组件
Nova_CaoFc
容器云技术专栏kubernetes容器云原生
一、前言在云原生技术席卷全球的今天,Kubernetes(K8s)已成为容器编排领域的事实标准。当大家都习惯了kubeadm、kubeasz等自动化工具一键部署的便利时,选择通过二进制方式手动搭建K8s集群更像是一场"知其然亦知其所以然"的深度修行。这种方式将带您穿透抽象层,直面etcd的分布式存储机制、kube-apiserver的RESTful接口设计、kubelet与CRI的交互细节,以及各
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- 深入 Go 语言垃圾回收:从原理到内建类型 Slice、Map 的陷阱以及为何需要 strings.Builder
go垃圾回收
本文是2025-0526-go-gc.md的续篇。在理解了Go垃圾回收(GarbageCollection,GC)的宏观设计,包括并发标记清扫、三色标记法以及混合写屏障等核心机制之后,一个自然而然O问题是:这些通用的GC原理是如何与Go语言内建(built-in)的数据结构(如切片、映射等)协同工作的?这些我们日常使用的工具,其内存的生命周期管理背后又有哪些值得注意的细节?本文将作为续篇,深入探讨
- 数据结构:多维数组在内存中的映射(Address Mapping of Multi-dimensional Arrays)
95号闪电麦坤
数据结构数据结构
目录行主映射(Row-MajorMapping)列主映射(Column-MajorMapping)三维数组的性映射公式行主映射推导列主映射推导在内存中,数据只能线性存储(一维地址线),但二维数组是逻辑上的“表格”结构。所以,编译器必须把二维数组的元素映射到内存中的线性地址。行主映射(Row-MajorMapping)行主映射是指:当我们用一维线性内存来存储二维数组时,优先存储每一整行的所有元素,然
- LL面试题11
三月七꧁ ꧂
破题·大模型面试语言模型gpt人工智能自然语言处理promptllama
物流算法实习面试题7道GLM是什么? GLM(GeneralizedLinearModel)是一种六义线性模型,用于建立变量之间的关系。它将线性回归模型推广到更广泛的数据分布,可以处理非正态分布的响应变量,如二项分布(逻辑回归)、泊松分布和伽玛分布等。GLM结合线性模型和非线性函数,通过最大似然估计或广义最小二乘估计来拟合模型参数。SVM的原理?怎么找到最优的线性分类器?支持向量是什么?
- 交叉熵损失和负熵似然损失(对分类器有用)
流量留
深度学习人工智能机器学习算法
1.**交叉熵损失(Cross-EntropyLoss)**-**定义**-交叉熵损失是用来衡量分类模型输出的概率分布与真实标签的概率分布之间的差异。假设对于一个分类任务,有\(C\)个类别,模型对第\(i\)个样本的输出是一个概率分布\(\mathbf{p}_i=[p_{i1},p_{i2},\dots,p_{iC}]\),其中\(p_{ic}\)表示模型预测样本属于第\(c\)类的概率。真实标
- 一个简单的故事介绍极大似然估计
极大似然估计(MaximumLikelihoodEstimation,MLE)是一种在统计中用于估计参数的方法,其核心思想是找到使观测数据出现的概率最大的参数值。故事背景假设我们有一个不均匀的六面色子,但我们不知道每一面出现的真实概率。传统上,一个均匀的六面色子每一面出现的概率应该是1/6,但这个色子因为某些原因(比如制造上的误差)导致各面出现的概率不同。我们的任务是,通过投掷这个色子多次,来估计
- Linux系统基础网络配置老鸟精华篇 【转】
文章出处:Linux系统基础网络配置老鸟精华篇对于linux高手看似简单的网络配置问题,也许要说出所以然来也并不轻松,因此仍然有太多的初学者徘徊在门外就不奇怪了,这里,老男孩老师花了一些时间总结了这个文档小结,也还不够完善,欢迎大家补充,交流。谢谢大家!20120827补充:http://oldboy.blog.51cto.com/2561410/974194深入浅出route命令小结目录:1)配
- Spring MVC请求处理流程深度解析:从源码到实战的架构剖析
序章:一场关于SpringMVC的技术面试面试官老王翘着二郎腿,悠然地品着茶,突然抬起头:老王:“小李啊,听说你对SpringMVC很熟悉?那我问你个简单的问题:当用户在浏览器输入一个URL,比如http://localhost:8080/user/123,这个请求到达我们的Spring应用后,是怎么一步步处理的?”小李(胸有成竹):“这个我知道!首先DispatcherServlet接收请求,然
- 【机器学习】什么是逻辑回归?从入门到精通:掌握逻辑回归与二分类问题的解决之道
宸码
模式识别机器学习机器学习python逻辑回归分类人工智能算法
从入门到精通:掌握逻辑回归与二分类问题的解决之道引言1.1逻辑回归简介1.2逻辑回归的应用场景逻辑回归基本原理2.1逻辑回归概述逻辑回归的基本思想预测类别的概率2.2线性模型与Sigmoid函数线性模型Sigmoid函数Sigmoid函数的性质为什么选择Sigmoid函数2.3逻辑回归的输出:概率值分类决策代价函数与优化数学基础3.1逻辑回归的假设与目标假设目标3.2对数似然函数概率模型对数似然函
- android 多通道音频,支持多通道录音
虾仁芝麻卷
android多通道音频
原生Android只支持2channel的录音。可是偏偏会有多mic的需求,比如说语音识别。目前已知TDM协议可以将多mic数据从kernel送到hal,从内核空间搬运到用户空间中。可是原生AudioRecord接口是完全不支持多channel录音数据的采集的,怎么修改,才能让原生进行支持呢?我们就从AudioRecord的构造函数开始往下研究。无论行不行,都要研究出个所以然来!我们如果写个录音a
- java中对象可达性分析 + 自动回收算法
盒子6910
运维专栏算法javajvm
“对象可达性分析+自动回收算法”是JavaGC(垃圾回收)核心的两个环节,下面详细解释:1.对象可达性分析(ReachabilityAnalysis)目的:判定哪些对象“活着”,哪些对象已经变成“垃圾”可以回收。原理:JVM会用一组叫“GCRoots(垃圾收集根节点)”的基础对象为起点,从这些根出发,沿着对象之间的引用关系去递归搜索。如果某个对象能通过这条引用链与GCRoot相连,那么它就是“可达
- 二分查找快速理解
作为数据结构接触到的入门第一个算法,很多人对它不以为然,但是作为小白学习还是很有必要的,循序渐进,打开算法的大门假如你要登录王者荣耀,当你这样做时,QQ或者微信必须核实你是否有其游戏的账户,因此在数据库中查找你的用户名和账号。如果你的用户名为king,腾讯可以从以A开头的部分开始查找,但更合乎逻辑的做法是从中间开始查找。二分查找是一种算法,要求输入是一个有序的元素列表,我们结合程序的话,如果要查找
- 推荐开源项目:Jupyter 与 Nix 的完美结合
支然苹
推荐开源项目:Jupyter与Nix的完美结合jupyenvDeclarativeandreproducibleJupyterenvironments-poweredbyNix项目地址:https://gitcode.com/gh_mirrors/ju/jupyenv在数据科学与编程领域,JupyterNotebook已经成为不可或缺的工具,以其交互性和易于分享的特点深受开发者和研究人员的喜爱。然
- 谨慎处理单片机中断,中断等价于比主程序优先级更高的线程
银铠电子
单片机单片机
有些小伙伴喜欢在单片机中断里做任务,殊不知可能会因此遇到棘手的bug,然后查半天查不出个所以然。本文为了纠正这个不良习惯,对单片机中断进行阐述。 无中断时,单片机跑着主程序,当中断时,单片机进入中断服务程序。所以,中断其实是比主程序优先级更高的线程,定时中断、串口中断,每一个中断都是一个线程。既是多线程,那必然有资源共享冲突问题。所以,小小单片机,背负着“多线程”的重任。共享资源冲突,可能是全局
- 原有的原生flutter项目如何迁移到鸿蒙?
harmonyos
原有的原生flutter项目如何迁移到鸿蒙?1、创建个新项目,把旧项目的lib与assets目录复制覆盖到新项目2、修改pubspec.yaml依赖,改为支持鸿蒙版本3、如果编译没问题理论上就能跑在鸿蒙设备上了4、Android或iOS平台上的一些特殊修改复制到新项目以上操作相对简单一些。如果在老项目里面改也是可以的,直接在项目根目录直行fluttercreate--platformsohos.然
- 概率密度基本概念
Summer_Anny
概率论
概率密度(ProbabilityDensity)是概率论中用于描述随机变量分布的一种方式,特别适用于连续随机变量。它并不是一个概率值,而是表示单位范围内的概率大小或“浓度”。更具体地说,概率密度表示在某个特定值附近,随机变量可能取到某个值的相对可能性。概率密度的几个关键点:概率密度与概率的关系:概率密度函数(PDF)本身并不能直接给出某个特定值发生的概率。因为对于连续随机变量,单一值的概率是零。然
- 机器学习3——参数估计之极大似然估计
平和男人杨争争
山东大学机器学习期末复习机器学习人工智能算法
参数估计问题背景:P(ωi∣x)=p(x∣ωi)P(ωi)p(x)p(x)=∑j=1cp(x∣ωj)P(ωj)\begin{aligned}&P\left(\omega_i\mid\mathbf{x}\right)=\frac{p\left(\mathbf{x}\mid\omega_i\right)P\left(\omega_i\right)}{p(\mathbf{x})}\\&p(\mathbf
- Pytorch 实战三 Cifar 10 数据加载
四川兔兔
Pytorchpytorch人工智能python
系列文章目录文章目录系列文章目录前言一、原始数据的读取二、数据的加载源代码标签加工辅助核心类前言 前两个实战然我们基本学会了Pytorch的使用,本文的Cifar10是经典的人工智能深度学习数据集。将详细介绍数据输入、网络搭建等其中的细致处理,这几个工程下来,我们一定会学会Pytorch编程的。一、原始数据的读取 Cifar10的数据集下载地址(可以在官网,这里我给出网盘地址):通过网盘分享的
- Go Modules
至此流年莫相忘
Golanggolang开发语言后端
什么是GoModules?Gomodules是Go语言的依赖解决方案,发布于Go1.11,成长于Go1.12,丰富于Go1.13,正式于Go1.14推荐在生产上使用。Gomoudles目前集成在Go的工具链中,只要安装了Go,自然而然也就可以使用Gomoudles了,而Gomodules的出现也解决了在Go1.11前的几个常见争议问题:Go语言长久以来的依赖管理问题。“淘汰”现有的GOPATH的使
- EM求解的高斯混合模型——Q函数的极大似然估计(九)
phoenix@Capricornus
概率论机器学习人工智能
先导:EM求解的混合密度模型——Q函数p(x∣θk)→N(x∣μk,Σk)p(\boldsymbol{x}\mid\boldsymbol{\theta}_k)\rightarrow{N}(\boldsymbol{x}\mid\boldsymbol{\mu_k},\boldsymbol{\Sigma}_k)p(x∣θk)→N(x∣μk,Σk)由上述推导即可获得高斯混合模型的EM算法:在每步迭代中,先
- 以太坊核心原理与源码全环节深度剖析
北漂老男人
区块链比特币区块链学习方法架构
以太坊核心原理与源码全环节深度剖析本文系统梳理以太坊从启动到合约执行的全流程,涵盖P2P网络、共识机制、账户模型、EVM执行、存储引擎等关键环节,逐行详解源码,解析设计模式与安全机制,助你“知其然,知其所以然”。目录架构总览与主线流程图节点启动与配置加载P2P网络与节点发现共识机制:Ethash/PoS账户模型与状态树交易池与交易验证EVM执行与合约安全持久化存储与快照进阶安全分析与扩展全局思维导
- ROS学习之消息通信
闲逸居士
ros
在ROS中,消息通信有话题,服务,动作,参数。话题(topic)发布者(Publicer)发布话题,订阅者(Subscriber)订阅话题。实质:发布者向主节点注册自己的话题等多种信息,并向该话题推送消息,不在乎谁订阅了。而订阅者订阅自己希望看到的话题的消息,也不在乎是谁推送的消息。所以许多时候,终端可以当作自定义节点使用,插足在其中。a.所以就有很多的特性,你自然而然就通了,异步很正常b.多个发
- Task 01 第一章习题
1.1说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为0与1的随机变量上的概率分布。假设观测到伯努利模型n次独立的数据生成结果,其中k次的结果为1,这时可以用极大似然估计或贝叶斯估计来估计结果为1的概率。回忆知识点:统计学习方法三要素为:模型+策略+算法模型:在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。策略:统计学习要考虑按照什么样的准则选
- 第1章: 伯努利模型的极大似然估计与贝叶斯估计
Dawn³
python
伯努利模型的极大似然估计与贝叶斯估计importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportbeta,bernoullifromscipy.optimizeimportminimize_scalar#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']#使用黑体plt.rcParam
- 解密监督学习:带你玩转预测未来的魔术 (代码驱动)
小吉择
学习
你好,未来的数据魔法师!你是否曾对机器如何看懂图片、预测股价、甚至诊断疾病感到好奇?这一切的背后,很多时候都离不开机器学习中的一个核心分支——监督学习(SupervisedLearning)。今天,我们将一起揭开它的神秘面纱,并通过大量代码实例,让你亲手体验构建预测模型的乐趣!什么是监督学习?一切从“标签”开始想象一下,你正在教一个孩子看图识字。你会给他看一张苹果的图片,并告诉他:“这是苹果”。然
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f