k8s 污点驱逐详解-源码分析 - 掘金
k8s驱逐篇(5)-kube-controller-manager驱逐 - 良凯尔 - 博客园
k8s驱逐篇(6)-kube-controller-manager驱逐-NodeLifecycleController源码分析 - 良凯尔 - 博客园
k8s驱逐篇(7)-kube-controller-manager驱逐-taintManager源码分析 - 良凯尔 - 博客园
nodeEvictionMap *nodeEvictionMap | // nodeEvictionMap stores evictionStatus *data for each node. *type nodeEvictionMap struct { lock sync.Mutex nodeEvictions map[string]evictionStatus } |
记录所有 node 的状态 1. 健康 unmarked 2. 等待驱逐 tobeevicted 3. 驱逐完成 evicted |
zoneStates map[string]ZoneState | type ZoneState string | 记录 zone 的健康状态 1. 新zone Initial 2. 健康的zone Normal 3. 部分健康zone PartialDisruption 4. 完全不健康 FullDisruption 这个是用于设置该zone 的驱逐速率 |
zonePodEvictor map[string]*scheduler.RateLimitedTimedQueue | 失联(不健康)的 Node 会放入此结构中,等待被驱逐,之后nodeEvictionMap 对应的状态记录会被设置为 evicted 1. 该结构,key 为zone,value 为限速队列处理(也就是上面驱逐效率起作用的地方) 2. 当一个 node 不健康,首先会计算出该 node 对应的zone 3. 然后放入该结构中 |
|
nodeHealthMap *nodeHealthMap | type nodeHealthMap struct { lock sync.RWMutex nodeHealths map[string]*nodeHealthData } |
|
type nodeHealthData struct { probeTimestamp metav1.Time readyTransitionTimestamp metav1.Time status *v1.NodeStatus lease *coordv1.Lease } |
记录每个node的健康状态,主要在 monitorHealth 函数中使用 1. 其中 probeTimestamp 最关键,该参数记录该 Node 最后一次健康的时间,也就是失联前最后一个 lease 的时间 2. 之后根据 probeTimestamp 和宽限时间 gracePeriod,判断该 node 是否真正失联,并设置为 unknown 状态 |
// Run starts an asynchronous loop that monitors the status of cluster nodes.
func (nc *Controller) Run(stopCh <-chan struct{}) {
defer utilruntime.HandleCrash()
klog.Infof("Starting node controller")
defer klog.Infof("Shutting down node controller")
// 1.等待leaseInformer、nodeInformer、podInformerSynced、daemonSetInformerSynced同步完成。
if !cache.WaitForNamedCacheSync("taint", stopCh, nc.leaseInformerSynced, nc.nodeInformerSynced, nc.podInformerSynced, nc.daemonSetInformerSynced) {
return
}
// 2.如果enable-taint-manager=true,开启nc.taintManager.Run
if nc.runTaintManager {
go nc.taintManager.Run(stopCh)
}
// Close node update queue to cleanup go routine.
defer nc.nodeUpdateQueue.ShutDown()
defer nc.podUpdateQueue.ShutDown()
// 3.执行doNodeProcessingPassWorker,这个是处理nodeUpdateQueue队列的node
// Start workers to reconcile labels and/or update NoSchedule taint for nodes.
for i := 0; i < scheduler.UpdateWorkerSize; i++ {
// Thanks to "workqueue", each worker just need to get item from queue, because
// the item is flagged when got from queue: if new event come, the new item will
// be re-queued until "Done", so no more than one worker handle the same item and
// no event missed.
go wait.Until(nc.doNodeProcessingPassWorker, time.Second, stopCh)
}
// 4.doPodProcessingWorker,这个是处理podUpdateQueue队列的pod
for i := 0; i < podUpdateWorkerSize; i++ {
go wait.Until(nc.doPodProcessingWorker, time.Second, stopCh)
}
// 5. 如果开启了feature-gates=TaintBasedEvictions=true,执行doNoExecuteTaintingPass函数。否则执行doEvictionPass函数
if nc.useTaintBasedEvictions {
// Handling taint based evictions. Because we don't want a dedicated logic in TaintManager for NC-originated
// taints and we normally don't rate limit evictions caused by taints, we need to rate limit adding taints.
go wait.Until(nc.doNoExecuteTaintingPass, scheduler.NodeEvictionPeriod, stopCh)
} else {
// Managing eviction of nodes:
// When we delete pods off a node, if the node was not empty at the time we then
// queue an eviction watcher. If we hit an error, retry deletion.
go wait.Until(nc.doEvictionPass, scheduler.NodeEvictionPeriod, stopCh)
}
// 6.一直监听node状态是否健康
// Incorporate the results of node health signal pushed from kubelet to master.
go wait.Until(func() {
if err := nc.monitorNodeHealth(); err != nil {
klog.Errorf("Error monitoring node health: %v", err)
}
}, nc.nodeMonitorPeriod, stopCh)
<-stopCh
}
此部分有如下几个作用
读取 Node 的 Label,用于确定 Node 属于哪个 zone;若该 zone 是新增的,就注册到 zonePodEvictor 或 zoneNoExecuteTainter (TaintManager 模式)
zonePodEvictor 后续用于该 zone 中失联的 Node,用于 Node 级别驱逐(就是驱逐 Node 上所有 Pod,并设置为 evicted 状态,此部分参见)
// pkg/controller/nodelifecycle/node_lifecycle_controller.go
// addPodEvictorForNewZone checks if new zone appeared, and if so add new evictor.
// dfy: 若出现新的 zone ,初始化 zonePodEvictor 或 zoneNoExecuteTainter
func (nc *Controller) addPodEvictorForNewZone(node *v1.Node) {
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
zone := utilnode.GetZoneKey(node)
// dfy: 若出现新的 zone ,初始化 zonePodEvictor 或 zoneNoExecuteTainter
if _, found := nc.zoneStates[zone]; !found {
// dfy: 没有找到 zone value,设置为 Initial
nc.zoneStates[zone] = stateInitial
// dfy: 没有 TaintManager,创建一个 限速队列,不太清楚有什么作用???
if !nc.runTaintManager {
// dfy: zonePodEvictor 负责将 pod 从无响应的节点驱逐出去
nc.zonePodEvictor[zone] =
scheduler.NewRateLimitedTimedQueue(
flowcontrol.NewTokenBucketRateLimiter(nc.evictionLimiterQPS, scheduler.EvictionRateLimiterBurst))
} else {
// dfy: zoneNoExecuteTainter 负责为 node 打上污点 taint
nc.zoneNoExecuteTainter[zone] =
scheduler.NewRateLimitedTimedQueue(
flowcontrol.NewTokenBucketRateLimiter(nc.evictionLimiterQPS, scheduler.EvictionRateLimiterBurst))
}
// Init the metric for the new zone.
klog.Infof("Initializing eviction metric for zone: %v", zone)
evictionsNumber.WithLabelValues(zone).Add(0)
}
}
func (nc *Controller) doEvictionPass() {
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
for k := range nc.zonePodEvictor {
// Function should return 'false' and a time after which it should be retried, or 'true' if it shouldn't (it succeeded).
nc.zonePodEvictor[k].Try(func(value scheduler.TimedValue) (bool, time.Duration) {
// dfy: 此处 value.Value 存储的是 Cluster Name
node, err := nc.nodeLister.Get(value.Value)
if apierrors.IsNotFound(err) {
klog.Warningf("Node %v no longer present in nodeLister!", value.Value)
} else if err != nil {
klog.Warningf("Failed to get Node %v from the nodeLister: %v", value.Value, err)
}
nodeUID, _ := value.UID.(string)
// dfy: 获得分配到该节点上的 Pod
pods, err := nc.getPodsAssignedToNode(value.Value)
if err != nil {
utilruntime.HandleError(fmt.Errorf("unable to list pods from node %q: %v", value.Value, err))
return false, 0
}
// dfy: 删除 Pod
remaining, err := nodeutil.DeletePods(nc.kubeClient, pods, nc.recorder, value.Value, nodeUID, nc.daemonSetStore)
if err != nil {
// We are not setting eviction status here.
// New pods will be handled by zonePodEvictor retry
// instead of immediate pod eviction.
utilruntime.HandleError(fmt.Errorf("unable to evict node %q: %v", value.Value, err))
return false, 0
}
// dfy: 在nodeEvictionMap设置node的状态为evicted
if !nc.nodeEvictionMap.setStatus(value.Value, evicted) {
klog.V(2).Infof("node %v was unregistered in the meantime - skipping setting status", value.Value)
}
if remaining {
klog.Infof("Pods awaiting deletion due to Controller eviction")
}
if node != nil {
zone := utilnode.GetZoneKey(node)
evictionsNumber.WithLabelValues(zone).Inc()
}
return true, 0
})
}
}
监听 Node 健康状态(通过监听 Node Lease 进行判别)
若 Lease 不更新,且超过了容忍时间 gracePeriod,认为该 Node 失联(更新 Status Ready Condition 为 Unknown)
// tryUpdateNodeHealth checks a given node's conditions and tries to update it. Returns grace period to
// which given node is entitled, state of current and last observed Ready Condition, and an error if it occurred.
func (nc *Controller) tryUpdateNodeHealth(node *v1.Node) (time.Duration, v1.NodeCondition, *v1.NodeCondition, error) {
// 省略一大部分 probeTimestamp 更新逻辑
// dfy: 通过 lease 更新,来更新 probeTimestamp
observedLease, _ := nc.leaseLister.Leases(v1.NamespaceNodeLease).Get(node.Name)
if observedLease != nil && (savedLease == nil || savedLease.Spec.RenewTime.Before(observedLease.Spec.RenewTime)) {
nodeHealth.lease = observedLease
nodeHealth.probeTimestamp = nc.now()
}
// dfy: 注意此处, Lease 没更新,导致 probeTimestamp 没变动,因此 现在时间超过了容忍时间,将此 Node 视作失联 Node
if nc.now().After(nodeHealth.probeTimestamp.Add(gracePeriod)) {
// NodeReady condition or lease was last set longer ago than gracePeriod, so
// update it to Unknown (regardless of its current value) in the master.
nodeConditionTypes := []v1.NodeConditionType{
v1.NodeReady,
v1.NodeMemoryPressure,
v1.NodeDiskPressure,
v1.NodePIDPressure,
// We don't change 'NodeNetworkUnavailable' condition, as it's managed on a control plane level.
// v1.NodeNetworkUnavailable,
}
nowTimestamp := nc.now()
// dfy: 寻找 node 是否有上面几个异常状态
for _, nodeConditionType := range nodeConditionTypes {
// dfy: 具有异常状态,就进行记录
_, currentCondition := nodeutil.GetNodeCondition(&node.Status, nodeConditionType)
if currentCondition == nil {
klog.V(2).Infof("Condition %v of node %v was never updated by kubelet", nodeConditionType, node.Name)
node.Status.Conditions = append(node.Status.Conditions, v1.NodeCondition{
Type: nodeConditionType,
Status: v1.ConditionUnknown,
Reason: "NodeStatusNeverUpdated",
Message: "Kubelet never posted node status.",
LastHeartbeatTime: node.CreationTimestamp,
LastTransitionTime: nowTimestamp,
})
} else {
klog.V(2).Infof("node %v hasn't been updated for %+v. Last %v is: %+v",
node.Name, nc.now().Time.Sub(nodeHealth.probeTimestamp.Time), nodeConditionType, currentCondition)
if currentCondition.Status != v1.ConditionUnknown {
currentCondition.Status = v1.ConditionUnknown
currentCondition.Reason = "NodeStatusUnknown"
currentCondition.Message = "Kubelet stopped posting node status."
currentCondition.LastTransitionTime = nowTimestamp
}
}
}
// We need to update currentReadyCondition due to its value potentially changed.
_, currentReadyCondition = nodeutil.GetNodeCondition(&node.Status, v1.NodeReady)
if !apiequality.Semantic.DeepEqual(currentReadyCondition, &observedReadyCondition) {
if _, err := nc.kubeClient.CoreV1().Nodes().UpdateStatus(context.TODO(), node, metav1.UpdateOptions{}); err != nil {
klog.Errorf("Error updating node %s: %v", node.Name, err)
return gracePeriod, observedReadyCondition, currentReadyCondition, err
}
nodeHealth = &nodeHealthData{
status: &node.Status,
probeTimestamp: nodeHealth.probeTimestamp,
readyTransitionTimestamp: nc.now(),
lease: observedLease,
}
return gracePeriod, observedReadyCondition, currentReadyCondition, nil
}
}
return gracePeriod, observedReadyCondition, currentReadyCondition, nil
}
根据 zone 设置驱逐速率
每个 zone 有不同数量的 Node,根据该 zone 中 Node 失联数量的占比,设置不同的驱逐速率
// dfy: 1. 计算 zone 不健康程度; 2. 根据 zone 不健康程度设置不同的驱逐速率
func (nc *Controller) handleDisruption(zoneToNodeConditions map[string][]*v1.NodeCondition, nodes []*v1.Node) {
newZoneStates := map[string]ZoneState{}
allAreFullyDisrupted := true
for k, v := range zoneToNodeConditions {
zoneSize.WithLabelValues(k).Set(float64(len(v)))
// dfy: 计算该 zone 的不健康程度(就是失联 node 的占比)
// nc.computeZoneStateFunc = nc.ComputeZoneState
unhealthy, newState := nc.computeZoneStateFunc(v)
zoneHealth.WithLabelValues(k).Set(float64(100*(len(v)-unhealthy)) / float64(len(v)))
unhealthyNodes.WithLabelValues(k).Set(float64(unhealthy))
if newState != stateFullDisruption {
allAreFullyDisrupted = false
}
newZoneStates[k] = newState
if _, had := nc.zoneStates[k]; !had {
klog.Errorf("Setting initial state for unseen zone: %v", k)
nc.zoneStates[k] = stateInitial
}
}
allWasFullyDisrupted := true
for k, v := range nc.zoneStates {
if _, have := zoneToNodeConditions[k]; !have {
zoneSize.WithLabelValues(k).Set(0)
zoneHealth.WithLabelValues(k).Set(100)
unhealthyNodes.WithLabelValues(k).Set(0)
delete(nc.zoneStates, k)
continue
}
if v != stateFullDisruption {
allWasFullyDisrupted = false
break
}
}
// At least one node was responding in previous pass or in the current pass. Semantics is as follows:
// - if the new state is "partialDisruption" we call a user defined function that returns a new limiter to use,
// - if the new state is "normal" we resume normal operation (go back to default limiter settings),
// - if new state is "fullDisruption" we restore normal eviction rate,
// - unless all zones in the cluster are in "fullDisruption" - in that case we stop all evictions.
if !allAreFullyDisrupted || !allWasFullyDisrupted {
// We're switching to full disruption mode
if allAreFullyDisrupted {
klog.V(0).Info("Controller detected that all Nodes are not-Ready. Entering master disruption mode.")
for i := range nodes {
if nc.runTaintManager {
_, err := nc.markNodeAsReachable(nodes[i])
if err != nil {
klog.Errorf("Failed to remove taints from Node %v", nodes[i].Name)
}
} else {
nc.cancelPodEviction(nodes[i])
}
}
// We stop all evictions.
for k := range nc.zoneStates {
if nc.runTaintManager {
nc.zoneNoExecuteTainter[k].SwapLimiter(0)
} else {
nc.zonePodEvictor[k].SwapLimiter(0)
}
}
for k := range nc.zoneStates {
nc.zoneStates[k] = stateFullDisruption
}
// All rate limiters are updated, so we can return early here.
return
}
// We're exiting full disruption mode
if allWasFullyDisrupted {
klog.V(0).Info("Controller detected that some Nodes are Ready. Exiting master disruption mode.")
// When exiting disruption mode update probe timestamps on all Nodes.
now := nc.now()
for i := range nodes {
v := nc.nodeHealthMap.getDeepCopy(nodes[i].Name)
v.probeTimestamp = now
v.readyTransitionTimestamp = now
nc.nodeHealthMap.set(nodes[i].Name, v)
}
// We reset all rate limiters to settings appropriate for the given state.
for k := range nc.zoneStates {
// dfy: 设置 zone 的驱逐速率
nc.setLimiterInZone(k, len(zoneToNodeConditions[k]), newZoneStates[k])
nc.zoneStates[k] = newZoneStates[k]
}
return
}
// We know that there's at least one not-fully disrupted so,
// we can use default behavior for rate limiters
for k, v := range nc.zoneStates {
newState := newZoneStates[k]
if v == newState {
continue
}
klog.V(0).Infof("Controller detected that zone %v is now in state %v.", k, newState
// dfy: 设置 zone 的驱逐速率
nc.setLimiterInZone(k, len(zoneToNodeConditions[k]), newState)
nc.zoneStates[k] = newState
}
}
}
// ComputeZoneState returns a slice of NodeReadyConditions for all Nodes in a given zone.
// The zone is considered:
// - fullyDisrupted if there're no Ready Nodes,
// - partiallyDisrupted if at least than nc.unhealthyZoneThreshold percent of Nodes are not Ready,
// - normal otherwise
func (nc *Controller) ComputeZoneState(nodeReadyConditions []*v1.NodeCondition) (int, ZoneState) {
readyNodes := 0
notReadyNodes := 0
for i := range nodeReadyConditions {
if nodeReadyConditions[i] != nil && nodeReadyConditions[i].Status == v1.ConditionTrue {
readyNodes++
} else {
notReadyNodes++
}
}
switch {
case readyNodes == 0 && notReadyNodes > 0:
return notReadyNodes, stateFullDisruption
case notReadyNodes > 2 && float32(notReadyNodes)/float32(notReadyNodes+readyNodes) >= nc.unhealthyZoneThreshold:
return notReadyNodes, statePartialDisruption
default:
return notReadyNodes, stateNormal
}
}
// dfy: 根据该 zone 健康状态(也就是健康比例),设置驱逐效率(频率)
func (nc *Controller) setLimiterInZone(zone string, zoneSize int, state ZoneState) {
switch state {
case stateNormal:
if nc.runTaintManager {
nc.zoneNoExecuteTainter[zone].SwapLimiter(nc.evictionLimiterQPS)
} else {
nc.zonePodEvictor[zone].SwapLimiter(nc.evictionLimiterQPS)
}
case statePartialDisruption:
if nc.runTaintManager {
nc.zoneNoExecuteTainter[zone].SwapLimiter(
nc.enterPartialDisruptionFunc(zoneSize))
} else {
nc.zonePodEvictor[zone].SwapLimiter(
nc.enterPartialDisruptionFunc(zoneSize))
}
case stateFullDisruption:
if nc.runTaintManager {
nc.zoneNoExecuteTainter[zone].SwapLimiter(
nc.enterFullDisruptionFunc(zoneSize))
} else {
nc.zonePodEvictor[zone].SwapLimiter(
nc.enterFullDisruptionFunc(zoneSize))
}
}
}
进行 Pod 驱逐的处理 proceeNoTaintBaseEviction
TainManager 的驱逐逻辑,看代码不难理解,大概说明
若开启 TaintManager 模式,所有 Pod、Node 的改变都会被放入,nc.tc.podUpdateQueue 和 nc.tc.nodeUpdateQueue 中
当 Node 失联时,会被打上 NoExecute Effect Taint(不在此处,在 main Controller.Run 函数中)
此处会先处理 nc.tc.nodeUpdateQueue 的驱逐
首先会检查 Node 是否有 NoExecute Effect Taint;没有就取消驱逐
有的话,进行 Pod 的逐个驱逐,检查 Pod 是否有该 Taint 的 toleration,有的话,就根据 toleration 设置 pod 的定时删除;没有 Toleration,就立即删除
接下来处理 nc.tc.podUpdateQueue 的驱逐