- 【人工智能时代】- Windows本地部署Ollama+qwen本地大语言模型Web交互界面并实现公网访问
xiaoli8748_软件开发
人工智能时代人工智能windows语言模型
文章目录前言1.运行Ollama2.安装OpenWebUI2.1在Windows系统安装Docker2.2使用Docker部署OpenWebUI3.安装内网穿透工具4.创建固定公网地址前言本文主要介绍如何在Windows系统快速部署Ollama开源大语言模型运行工具,并安装OpenWebUI结合cpolar内网穿透软件,实现在公网环境也能访问你在本地内网搭建的大语言模型运行环境。近些年来随着Cha
- 51-59 CVPR 2024 | ChatSiM:Editable Scene Simulation for Autonomous Driving via Collaborative LLM
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶AIGCstablediffusion智慧城市计算机视觉
24年3月,上海交通大学、上海人工智能实验室、卡内基梅隆大学和清华大学联合发布EditableSceneSimulationforAutonomousDrivingviaCollaborativeLLM-Agents,基于LLM协作的可编辑自动驾驶场景仿真。ChatSim利用了大型语言模型(LLM)智能体协作框架,采用了一种新颖的多摄像头神经辐射场McNeRF和多摄像头照明估计McLight方法实
- 大语言模型本地化部署+可视化微调
科研小fw
人工智能语言模型人工智能自然语言处理pythonchatgpt
目录本地化部署GLM4Qwen2大模型微调本地化部署2023年被称为人工智能(AI)元年,AI技术在全球范围内飞速发展,已经渗透到了各行各业。随着chatgpt的爆火,国内外的大语言模型(LargeLanguageModel,LLM)争先恐后,高速发展,人工智能技术也从传统的判别式人工智能逐渐转向了生成式人工智能,LLM作为AI的一种具体表现形式,除去关注大模型的回答精度,作为用户来说,会更加关注
- 现代编程的影响
2501_90255623
生活
一、编程对技术创新的推动作用1.1引领前沿科技发展编程是人工智能、大数据、物联网、区块链等前沿科技的核心驱动力。通过编程,研发人员能够快速验证并迭代创新想法,推动这些领域的技术突破。例如,在人工智能领域,编程使得机器学习算法得以实现,从而创造出能够自主学习和适应环境的智能系统。1.2促进开源文化繁荣编程促进了开源文化的发展,使得全球范围内的开发者能够共享代码、知识和经验。开源项目不仅加速了技术创新
- 长上下文大模型会让检索增强生成(RAG)过时吗?
人工智能
长上下文大模型会让检索增强生成(RAG)过时吗?大模型(LLM)的迅速发展对人工智能领域,尤其是自然语言处理(NLP)产生了重大影响。传统上,像检索增强生成(RAG)这样的技术通过允许模型动态访问外部知识源,在提升大语言模型能力方面发挥了重要作用。然而,长上下文大语言模型(能够处理多达100万个令牌的上下文窗口的模型)的出现,引发了一个有趣的问题:长上下文大语言模型会让检索增强生成(RAG)过时吗
- 中文对联/十二生肖/城市景点/旅游计划……年味超浓的数据集汇总
正月初三,年味正浓。新春的喜庆氛围不仅弥漫在大街小巷,也在人工智能领域引发了诸多创新应用。从AI生成春联,到春运交通标志的智能识别,再到生肖文化的深度挖掘,AI工具正赋能传统民俗,让年味更浓!在这阖家团圆,喜庆祥和的日子里,HyperAI超神经为大家整理了8个春节相关的数据集,涵盖对联、十二生肖、民族文化等热门主题,助力开发者在AI赋能春节的道路上大展拳脚!快来领取你的「新春大礼包」吧~点击查看更
- Lua语言的云计算
依瑾雅
包罗万象golang开发语言后端
Lua语言在云计算中的应用引言随着信息技术的不断发展,云计算作为一种新兴的计算模式,已经逐渐改变了我们对计算资源的使用和管理方式。云计算为用户提供了灵活、高效、可扩展的计算服务,促使了大数据、人工智能等技术的发展。在众多编程语言中,Lua作为一门轻量级、高效且易于扩展的脚本语言,逐渐在云计算领域展现出了其独特的优势。本文将探讨Lua语言在云计算中的应用,深入挖掘其在云计算架构、开发和管理中的价值。
- MATLAB机器学习、深度学习
Yolo566Q
机器学习matlabmatlab机器学习深度学习
目录第一章MATLAB图像处理基础第二章BP神经网络及其在图像处理中的应用第三章卷积神经网络及其在图像处理中的应第四章迁移学习算法及其在图像处理中的应用第五章生成式对抗网络(GAN)及其在图像处理中的应用第六章目标检测YOLO模型及其在图像处理中的应用第七章讨论与答疑近年来,随着无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是在计算机
- 目标检测数据集-Pascal VOC 数据集介绍
AI研习图书馆
深度学习数据集目标检测数据集VOC2007
个人微信公众号:AI研习图书馆ID:(Art-Intelligence)欢迎关注,交流学习,共同进步~1.引言PASCALVOC数据集,为图像识别和分类提供了一整套标准化的优秀数据集,从2005年到2012年每年都会举行一场图像识别challenge。该挑战的主要目的是识别真实场景中一些类别的物体。在该挑战中,这是一个监督学习的问题,训练集以带标签的图片的形式给出。介绍PascalVOC数据集:C
- 机器学习在金融领域的应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习在金融领域的应用1.背景介绍1.1金融行业面临的挑战1.1.1海量数据处理1.1.2实时风险监控1.1.3个性化服务需求1.2机器学习的兴起1.2.1大数据时代的到来1.2.2计算能力的提升1.2.3算法的不断创新2.核心概念与联系2.1机器学习的定义与分类2.1.1有监督学习2.1.2无监督学习2.1.3强化学习2.2机器学习与人工智能、深度学习的关系2.2.1人工智能的发展历程2.2.
- 16种重要编程语言概览
junecauzhang
软件开发语言原创开发语言c语言c++
1、LISP作者:麻省理工学院的人工智能研究先驱约翰·麦卡锡(JohnMcCarthy)发明年代:1958年应用领域:长期以来垄断人工智能领域的应用,。Lisp最初是作为展示程序的实用模型发布的。在20世纪70年代和80年代,Lisp家族成为人工智能领域非常受欢迎的语言。主要特点:LISP是一种通用高级计算机程序语言,LISP作为应用人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别
- NVIDIA的算力支持
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
NVIDIA的算力支持关键词:NVIDIA,GPU,Turing架构,RTX,AI,AIoT,云计算,大数据,深度学习1.背景介绍NVIDIA作为全球领先的图形处理芯片制造商,近年来在人工智能领域也取得了显著的进展。NVIDIA的GPU(图形处理器)因其强大的并行计算能力,成为了深度学习和人工智能(AI)领域的主流硬件。NVIDIA的Turing架构引入了更强的张量计算能力,使得深度学习任务能够更
- 一切皆是映射:神经网络在图像识别中的应用案例
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:神经网络在图像识别中的应用案例关键词:神经网络、图像识别、深度学习、卷积神经网络、映射、模式识别1.背景介绍1.1问题的由来图像识别问题的研究源于人类对于智能机器的渴望。早在20世纪50年代,人工智能的先驱们就开始探索如何让计算机具备类似人类的视觉感知能力。从最初的简单模式匹配,到后来的统计学习方法,再到如今的深度学习,图像识别技术经历了几代演变。这一演变过程反映了人工智能技术的快速
- 人工智能基础知识速成 - 机器学习、深度学习算法原理及其实际应用案例
苹果酱0567
面试题汇总与解析课程设计springbootvue.jsjavamysql
一、机器学习概念与原理什么是机器学习?机器学习是人工智能的一个分支,通过从数据中学习和改进算法,使计算机系统在没有明确编程的情况下也能够自动地学习和改进。机器学习是一种实现人工智能的技术手段,能够让计算机“自我学习”,从而实现更准确的预测和决策。机器学习的基本原理机器学习的基本原理是通过构建数学模型,使用大量的数据进行训练,使得模型能够智能地预测和决策。在机器学习中,常用的模型包括线性回归、逻辑回
- 详解PASCAL VOC数据集及基于Python和PyTorch的下载、解析及可视化【目标检测+类别分割】
KRISNAT
机器学习数据集pythonpytorch目标检测
目录PASCALVOC数据集简介PASCALVOC各年份数据集摘要数据集下载通过下面官方提供的网址下载通过PyTorch的API下载数据集解析目标检测数据集物体分割数据集参考文献PASCALVOC数据集简介PASCALVOC数据集是计算机视觉领域中目标检测(objectdetection)任务和分割(segmentation)任务的基准数据集。PASCALVOC数据和比赛发源于由欧盟资助的PASC
- 一切皆是映射:元学习中的神经架构搜索(NAS)
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
元学习神经架构搜索NAS遗传算法强化学习演化算法一切皆是映射:元学习中的神经架构搜索(NAS)在人工智能的广阔领域中,神经架构搜索(NeuralArchitectureSearch,简称NAS)是一颗璀璨的明星,它代表着一种全新的方法,即通过算法自动寻找最优的神经网络架构。这种思想源于元学习(Meta-Learning),它关注的是如何使学习过程本身变得更加高效。本文将深入探讨NAS的原理、方法、
- Meta要用AI替代中级工程师?科技变革下的职场风云!
盼达思文体科创
经验分享
引言在当今科技飞速发展的时代,人工智能(AI)已经成为了各个领域的热门话题。从智能家居到自动驾驶,从医疗诊断到金融分析,AI的应用范围越来越广泛,影响力也越来越大。Meta,作为全球科技巨头之一,一直处于技术创新的前沿。最近有消息传出,Meta计划用AI替代中级工程师,这一消息犹如一颗重磅炸弹,在科技圈和职场中引起了轩然大波。这一选题之所以值得我们重视,是因为它不仅关乎着Meta公司内部的人员结构
- AI助力编程,还是让程序员沦为“编程文盲”?
盼达思文体科创
经验分享
引言在当今这个科技飞速发展的时代,人工智能(AI)已经渗透到了我们生活的方方面面,而在编程领域,AI的影响力更是与日俱增。从早期简单的代码补全工具,到如今强大的代码生成模型,AI正在逐渐改变程序员的工作方式。据相关数据显示,超过70%的程序员在日常工作中使用过某种形式的AI编程辅助工具。那么,这种改变究竟是好是坏呢?这就是我们今天要探讨的重要话题。有人认为AI极大地提高了编程效率,让程序员能够专注
- Meta疯了?竟想用AI让中级工程师集体下岗!|AI头条
盼达思文体科创
经验分享
引言在当今科技飞速发展的时代,人工智能(AI)技术宛如一颗璀璨的新星,照亮了各个领域前行的道路。从智能语音助手到自动驾驶汽车,AI的身影无处不在,深刻地改变着我们的生活和工作方式。随着AI技术的不断突破,其在企业中的应用也日益广泛,各大科技巨头纷纷布局,希望借助AI的力量提升自身的竞争力。Meta,作为全球知名的科技公司,一直处于技术创新的前沿。此次传出将用AI替代中级工程师的消息,无疑在科技圈和
- 彻底颠覆!DeepSeek-R1横空出世,直接碾压OpenAI!
盼达思文体科创
经验分享
引言家人们,最近科技圈可太炸了!在人工智能领域,一直以来OpenAI就像一个超级霸主,凭借着强大的技术和广泛的应用,占据着全球人工智能市场的重要地位。它的GPT系列产品,从GPT-3到GPT-4Turbo,每一次更新都能引起全球的关注,无论是内容创作、智能客服还是科学研究,OpenAI的技术都发挥着重要作用。然而,就在大家都以为OpenAI会一直“独孤求败”的时候,中国的DeepSeek-R1突然
- 【LangChain编程:从入门到实践】代码实践
AI天才研究院
计算大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】代码实践1.背景介绍1.1人工智能的发展历程人工智能(ArtificialIntelligence,AI)是当代科技领域最具革命性和颠覆性的技术之一。自20世纪50年代诞生以来,AI经历了起伏跌宕的发展历程。在早期,AI主要集中于基于规则的系统和专家系统,试图模拟人类的推理过程。然而,随着大数据时代的到来和计算能力的飞速提升,机器学习和深度学习技术开始占据主
- 基于深度学习的植物病害检测系统
A等天晴
计算机视觉深度学习人工智能
引言背景介绍植物病害对农业生产的影响不容忽视。随着全球人口的增长和气候变化的影响,农作物病害问题变得更加严峻。传统的植物病害检测方法往往依赖于人工检测,不仅耗时费力,而且对检测者的专业知识要求较高。深度学习技术,尤其是YOLO(YouOnlyLookOnce)模型,在图像识别和目标检测领域取得了显著的成果。YOLO模型可以在实时情况下检测并识别图像中的多个目标,为植物病害的快速检测提供了新的途径。
- 大模型应用开发课程上新!
人工智能
在人工智能快速发展的今天,大模型应用已逐渐渗透到各个行业,对我们的工作和生活产生了深远的影响。越来越多的企业和开发者渴望深入探索大模型落地应用,然而却缺少高质量且专业的培训课程及学习途径。为满足企业和开发者在实际场景中使用大模型、创建大模型应用的需求,百度智能云千帆AI加速器近日推出线上加速营。针对各行业普遍适用的大模型功能场景,如逻辑编排、文件撰写等,采用案例实操讲解的方式授课。企业和开发者可以
- AI 图像生成器,如何使用 Janus-Pro 和 Janus, Deepseek 的 Janus-Pro、Janus 和其他领先工具的比较
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekjanuspro
介绍人工智能(AI)彻底改变了数字艺术和设计领域,使创建高质量图像变得前所未有的简单,而且只需付出最少的努力。人工智能驱动的图像生成器使用深度学习算法将文本描述转换为逼真或艺术化的视觉效果,可满足营销、广告、游戏和内容创作等各种行业的需求。在本综合指南中,我们将探索一些最流行的AI图像生成器,包括DeepSeek的Janus-Pro和Janus,以及DALL·E3、Midjourney、Stabl
- OpenAI新商标申请曝光:AI硬件、机器人、量子计算全线布局?
新加坡内哥谈技术
人工智能深度学习语言模型学习科技
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/上周五,AI初创公司OpenAI向美国专利商标局(USPTO)提交了一项新的商标申请,涵
- 机器学习,深度学习,神经网络,深度神经网络
武昌库里写JAVA
面试题汇总与解析java学习开发语言课程设计springboot
人工智能包含机器学习,机器学习包含深度学习(是其中比较重要的分支)。深度学习源自于人工神经网络的研究,但是并不完全等于传统神经网络。神经网络与深度神经网络的区别在于隐藏层级,通常两层或两层以上隐藏层的网络叫做深度神经网络。一般隐藏层越多,精确度越高。深度学习的算法又分很多种,比较典型的四种:卷积神经网络—CNN,循环神经网络—RNN,生成对抗网络—GANs,深度强化学习—RL。机器学习和深度学习的
- DeepSeek-R1 低成本训练的根本原因是?
明哲AI
AIGC人工智能大模型deepseekAIAgent
在人工智能领域,大语言模型(LLM)正以前所未有的速度发展,驱动着自然语言处理、内容生成、智能客服等众多应用的革新。然而,高性能的背后往往是高昂的训练成本,动辄数百万美元的投入让许多企业和研究机构望而却步。近期,国产大模型DeepSeek-R1的横空出世,以其卓越的性能和极具竞争力的成本,打破了这一固有认知。它在MATH基准测试中,以77.5%的准确率媲美OpenAIo1模型,但训练成本却仅为其三
- 关于大模型 AGI 应知应会_生在AI发展的时代
森焱森
机器人人工智能算法总结科技
在AI时代,大模型和通用人工智能(AGI)正在深刻改变我们的生活和工作方式。以下是一些关于大模型和AGI的关键知识点,帮助我们更好地理解这一技术浪潮。一、大模型的核心概念与特点(一)什么是大模型大模型(LargeLanguageModels,LLMs)是指具有大规模参数和复杂计算结构的深度学习模型,通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。这些模型通过训练海量数据来学习复杂的模式和特
- 无需昂贵GPU:本地部署开源AI项目LocalAI在消费级硬件上运行大模型
芯作者
DD:日记人工智能
无需昂贵GPU:本地部署开源AI项目LocalAI在消费级硬件上运行大模型随着人工智能技术的快速发展,越来越多的AI模型被广泛应用于各个领域。然而,运行这些模型通常需要高性能的硬件支持,特别是GPU(图形处理器),这往往导致较高的成本门槛。为了打破这一限制,开源AI项目LocalAI提供了一种在消费级硬件上运行大模型的有效方案。本文将详细介绍LocalAI的工作原理、硬件配置要求、以及如何在消费级
- DeepSeek-V3与GPT-4o的对比详解
芯作者
DD:日记数据挖掘数据分析
DeepSeek-V3,作为一款引人注目的开源大型语言模型,自其诞生以来,便以卓越的性能和高效的性价比,在AI界掀起了一股新的浪潮。本文将详细介绍DeepSeek-V3的诞生背景、技术优势,以及与顶尖闭源模型GPT-4o的对比,以期为读者提供一个全面而通俗的理解。一、DeepSeek-V3的诞生DeepSeek-V3由杭州深度求索人工智能基础技术研究有限公司(DeepSeek)于2024年12月2
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo