- 点云从入门到精通技术详解100篇-基于 CBCT 与口内扫描数据的牙齿点云配准
格图素书
深度学习计算机视觉数学建模人工智能
目录前言国内外研究现状传统牙齿配准点云配准2牙齿数据的深度学习点云配准基础2.1牙齿数据获取方法2.1.1口腔印模2.1.2辐射成像2.1.3口内扫描2.2深度学习网络2.2.1全连接神经网络2.2.2卷积神经网络2.2.3孪生神经网络2.3点云数据配准基础2.3.1点云数据格式2.3.2点云旋转表达2.3.3传统点云配准方法3基于PCRNet的PCR-SA牙齿点云配准3.1CBCT-IOS牙齿配
- PyTorch入门实战:从零搭建你的第一个神经网络
不打滑的西瓜皮
机器学习深度学习人工智能神经网络pythonpytorchpycharm
目录一、PyTorch简介:为什么选择它?二、环境搭建:5分钟快速安装三、核心概念:张量与自动求导1.张量(Tensor):深度学习的数据基石2.自动求导(Autograd):神经网络训练的核心四、实战:手写数字识别(MNIST)1.数据集加载与预处理2.构建卷积神经网络(CNN)3.训练与评估五、下一步学习建议一、PyTorch简介:为什么选择它?PyTorch是当前最热门的深度学习框架之一,由
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- 25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示
小宇爱
深度学习-自学之路深度学习cnn人工智能
importkeras#添加Keraskuimportsys,numpyasnpfromkeras.utilsimportnp_utilsimportosfromkeras.datasetsimportmnistprint("licheng:"+"20"+'\n')np.random.seed(1)(x_train,y_train),(x_test,y_test)=mnist.load_data(
- 24、深度学习-自学之路-卷积神经网络
小宇爱
深度学习-自学之路深度学习cnn人工智能
一、你怎么理解卷积神经网络呢,我的理解是当你看一个东西的时候,你的眼睛距离图片越近,你看到的东西就越清晰,但是如果你看到的图片只是整个物体的一小部分,那么你将不知道你看到的物品是什么,因为关注整体更容易知道物品是什么。如果你保持一定的距离,你就会发现你可以看到物品更加的全貌一些,这样将方便你观察物品的类别。如果你距离的再远一点,你就会看到物品的轮廓,那么你将依据物品的轮廓去判断物品的类别。如果图片
- 【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)
天天科研工作室
故障诊断模型RIME-CNN-SVM故障诊断matlabcnn
【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章目录【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章介绍基本步骤代码分享运行结果参考资料文章介绍基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型是一种利用MATLAB编程环境,结合RIME-C
- cnn以及例子
阿拉斯攀登
机器学习cnn人工智能神经网络
cnnCNN即卷积神经网络(ConvolutionalNeuralNetwork),是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型,在计算机视觉、语音识别等诸多领域都有广泛应用。以下是CNN的详细介绍:基本原理卷积层:是CNN的核心组成部分,通过卷积核在数据上滑动进行卷积操作,自动提取数据中的局部特征。例如,在处理图像时,卷积核可以检测图像中的边缘、线条等简单特征。卷积操作大
- RIME-CNN-SVM故障诊断
九亿AI算法优化工作室&
cnn支持向量机人工智能matlabpython
构建一个高效、准确的基于卷积神经网络(CNN)的电力系统故障识别与分类仿真系统,实现对电力系统故障的精准识别与分类。在这一模型中,CNN被用来执行故障数据的特征提取与抽象化处理,随后,这些经过抽象的特征会被传递给SVM模型,由SVM进一步执行分类与回归分析的任务,从而实现对故障类型的精确判定或故障严重程度的准确评估。为了进一步提升模型的泛化能力与预测精度,引入了雾凇算法来精细调整CNN与SVM的各
- R-CNN架构
人工智能
R-CNN架构架构RCCN由三个模块组成:第一个模块生成与类别无关的区域提议。这些提议定义了我们的检测器可用的候选检测集。第二个模块是一个大型卷积神经网络,它从每个区域中提取固定长度的特征向量。第三个模块是一组特定类别的线性支持向量机(SVM)。虽然R-CNN对特定的区域提议方法不挑剔,但选择性搜索(Selectivesearch)是最常用的方法,以便与之前的检测工作进行有对照的比较。实现在测试时
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- 【野生动物识别系统】Python+深度学习+人工智能+卷积神经网络算法+TensorFlow+ResNet+图像识别
图像识别深度学习
一、介绍动物识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对18种动物数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张动物图片识别其名称。目前可识别的动物有:'乌龟','云豹','变色龙','壁虎','狞猫','狮子','猎豹','美洲狮','美洲虎','老虎','蜥蜴','
- Pointnet++改进即插即用系列:全网首发ACConv2d|即插即用,提升特征提取模块性能
AICurator
Pointnet++改进专栏python深度学习pytorch点云pointnet++
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入ACConv2d,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三1.理论介绍由于在给定的应用环境中设计合适的卷积神经网络(CNN)架构通常需要大量的人工工作或大量的GPU时间,研究社区正在
- Transformer细节(九)——Transformer位置编码
多学学多写写
transformer深度学习人工智能
一、总述Transformer模型中的位置编码(PositionalEncoding)是用于向模型提供序列中各个元素位置信息的机制。由于Transformer没有卷积神经网络或循环神经网络中固有的序列顺序信息,它必须通过位置编码显式地引入这些信息。二、为什么需要位置编码Transformer模型依赖于自注意力机制(self-attentionmechanism),该机制在计算时对序列中的所有位置一
- 【蔬菜识别】Python+深度学习+CNN卷积神经网络算法+TensorFlow+人工智能+模型训练
图像识别深度学习人工智能
一、介绍蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆','大白菜','大葱','莲藕','菠菜','西红柿','韭菜','黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。二、系统效果图片展示三、演示视
- 【蝴蝶识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+图像识别+算法模型
图像识别人工智能深度学习
一、介绍蝴蝶识别系统,本系统使用Python作为主要开发语言,通过收集了20种蝴蝶图片数据集('001.黑三线凤蝶','002.褐脉三线凤蝶','003.黄斑翠凤蝶','004.暗脉翠凤蝶','005.密斑翠凤蝶','006.青凤蝶','007.绿带青凤蝶','008.玉带青凤蝶','009.柑橘凤蝶','010.长尾翠凤蝶','011.绿尾翠凤蝶','012.红纹凤蝶','013.黄凤蝶','0
- 基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
一、介绍蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)","毒鹅膏菌(Amanita)","牛肝菌(Boletus)","网状菌(Cortinarius)","毒镰孢(Entoloma)","湿孢菌(Hygrocybe)","乳菇(Lactarius)","红菇(Russula)","
- 深度学习-与OCR结合
小赖同学啊
人工智能深度学习ocr人工智能
光学字符识别(OCR)旨在将图像中的文本信息转换为计算机可编辑的文本,深度学习技术能够显著提升OCR的准确性和泛化能力。下面为你介绍如何将深度学习与OCR结合,同时给出使用Python和相关库实现的代码示例。整体思路结合深度学习实现OCR通常包含以下几个步骤:数据准备:收集和标注包含文本的图像数据,构建训练集和测试集。模型构建:选择合适的深度学习模型,如卷积神经网络(CNN)结合循环神经网络(RN
- 基于“感知–规划–行动”的闭环系统架构
由数入道
人工智能系统架构人工智能智能体
1.感知(Perception)1.1多模态数据采集与预处理传感器系统Agent的感知层通常由多种传感器组成,支持采集多种形式的数据:视觉:采用摄像头、深度传感器,通过卷积神经网络(CNN)、视觉Transformer等模型实现目标检测、图像分类、场景理解。听觉:利用麦克风阵列、声学传感器,结合声纹识别、语音识别(如基于Transformer或RNN的模型)技术处理音频信息。文本与语义信息:通过文
- 深度学习-医学影像诊断
小赖同学啊
人工智能深度学习人工智能
以下以使用深度学习进行医学影像(如X光片)的肺炎诊断为例,为你展示基于PyTorch框架的代码实现。我们将构建一个简单的卷积神经网络(CNN)模型,使用公开的肺炎X光影像数据集进行训练和评估。1.安装必要的库pipinstalltorchtorchvisionnumpymatplotlibpandas2.代码实现importtorchimporttorch.nnasnnimporttorch.op
- coarse-to-fine(1) CF-DRNet
momoka9
论文笔记python
1、Coarse-to-fineclassificationfordiabeticretinopathygradingusingconvolutionalneuralnetwork使用卷积神经网络对糖尿病视网膜病变分级进行从粗到细的分类。ArtificialIntelligenceinMedicineVolume108,August2020,101936亮点首次提出了一个分层的从粗到细的糖尿病视网
- AI大模型系列之七:Transformer架构讲解
m0_74823683
面试学习路线阿里巴巴人工智能transformer深度学习
目录Transformer网络是什么?输入模块结构:编码器模块结构:解码器模块:输出模块结构:Transformer具体是如何工作的?Transformer核心思想是什么?Transformer的代码架构自注意力机制是什么?多头注意力有什么用?前馈神经网络编码器(Encoder)解码器(Decoder):基于卷积神经网络(CNN)的编码器-解码器结构基于Transformer架构的主流语言模型有哪
- CNN-day5-经典神经网络LeNets5
谢眠
深度学习深度学习计算机视觉人工智能
经典神经网络-LeNets51998年YannLeCun等提出的第一个用于手写数字识别问题并产生实际商业(邮政行业)价值的卷积神经网络参考:论文笔记:Gradient-BasedLearningAppliedtoDocumentRecognition-CSDN博客1网络模型结构整体结构解读:输入图像:32×32×1三个卷积层:C1:输入图片32×32,6个5×5卷积核,输出特征图大小28×28(3
- CNN卷积神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)
机器学习之心
时序预测cnnmatlab人工智能
代码地址:CNN卷积神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)标题:CNN卷积神经网络多变量多步预测,光伏功率预测一、引言1.1研究背景及意义随着全球能源危机的加剧和环保意识的提升,太阳能作为一种清洁、可再生的能源,受到了广泛关注和利用。光伏发电因其不产生温室气体排放、不消耗化石燃料等优势,成为太阳能利用的重要形式之一。然而,光伏发电的输出功率具有很强的间歇性和波动性,这给
- 深度学习的算法在人群计数(数人头)
人工智能专属驿站
计算机视觉
基于深度学习的算法在人群计数(数人头)任务中表现较为出色,尤其是在处理复杂场景和大规模数据集时。以下是几种被广泛认为效果较好的算法类别及其特点:1.基于卷积神经网络(CNN)的算法特点:利用CNN的强大特征提取能力,直接从图像中学习人群计数的特征。优势:高精度:能够自动学习复杂的特征,适合处理大规模数据集。泛化能力强:通过大量数据训练,模型能够适应不同的场景和人群密度。代表算法:MCNN(Mult
- 卷积 - 感受野(Receptive Field)
二分掌柜的
卷积神经网络深度学习神经网络人工智能卷积
卷积-感受野(ReceptiveField)flyfish感受野(ReceptiveField)是指卷积神经网络中某一层的一个特定神经元能够“看到”并响应的输入图像区域。简单来说,它是指卷积核在输入图像上滑动过程中每次覆盖的区域。感受野的大小随着卷积层的增加而增大,即网络越深,感受野越大。感受野的直观理解假设我们有一个简单的卷积神经网络,只有一层卷积层,卷积核大小为3×33\times33×3,步
- Vision Transformer学习笔记(2020 ICLR)
刘若里
论文阅读学习笔记网络计算机视觉transformer
摘要(Abstract):简述了ViT(VisionTransformer)模型的设计和实验结果,展示了其在大规模图像数据集上进行训练时的优越性能。该模型直接采用原始图像块作为输入,而不是传统的卷积神经网络(CNNs),并通过Transformer架构处理这些图像块以实现高效的图像识别。引言(Introduction):强调了传统卷积神经网络在图像识别领域的主导地位及其局限性,尤其是随着数据集规模
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb