【数据结构与算法】迪杰斯特拉算法

迪杰斯特拉算法

介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。它的主要特点是以中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

算法过程

设置出发顶点为 v,顶点集合 V{v1,v2,v3…vi},v 到 V 中各顶点的距离构成距离集合 Dis,Dis{d1,d2,d3…di},Dis 集合记录着 v 到图中各顶点的距离(到自身可以看做 0,v 到 vi 举例对应为 di)

  1. 从 Dis 中选择值最小的 di 并移出 Dis 集合,同时移出 V 集合中对应的顶点 vi,此时的 v 到 vi 即为最短路径
  2. 更新 Dis 集合,更新规则为:比较 v 到 V 结合中顶点的距离值,与 v 通过 vi 到 V 集合中顶点的距离值,保留值最小的一个(同时也应该更新顶点的前驱节点为 vi,表明是通过 vi 到达的)
  3. 重复执行两步骤,直到最短路径顶点为目标顶点即可结束

迪杰斯特拉算法最佳应用 - 最短路径

【数据结构与算法】迪杰斯特拉算法_第1张图片

  1. 战争时期,胜利乡有 7 个村庄(A,B,C,D,E,F,G),现在有六个邮差,从 G 点出发,需要分别把邮件分别送到 A,B,C,D,E,F 六个村庄
  2. 各个村庄的距离用边线表示(权),比如 A - B 距离 5 公里
  3. 问:如何计算出 G 村庄到其他各个村庄的最短距离?
  4. 如果从其他点出发到各个点的最短距离又是多少?

代码实现

public class DijkstraAlgorithm {
    public static void main(String[] args) {
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        // 邻接矩阵
        int[][] matrix = new int[vertex.length][vertex.length];
        final int N = 65535; // 表示不可连接
        matrix[0] = new int[]{N, 5, 7, N, N, N, 2};
        matrix[1] = new int[]{5, N, N, 9, N, N, 3};
        matrix[2] = new int[]{7, N, N, N, 8, N, N};
        matrix[3] = new int[]{N, 9, N, N, N, 4, N};
        matrix[4] = new int[]{N, N, 8, N, N, 5, 4};
        matrix[5] = new int[]{N, N, N, 4, 5, N, 6};
        matrix[6] = new int[]{2, 3, N, N, 4, 6, N};
        // 创建图
        Graph graph = new Graph(vertex, matrix);
        graph.showGraph();
        graph.dsj(6);
        graph.showDijkstra();
    }
}

class Graph {
    private char[] vertex; // 顶点数组
    private int[][] matrix; // 邻接矩阵
    private VisitedVertex vv; // 已经访问的顶点的集合

    public Graph(char[] vertex, int[][] matrix) {
        this.vertex = vertex;
        this.matrix = matrix;
    }

    /**
     * 显示结果
     */
    public void showDijkstra() {
        vv.show();
    }

    /**
     * 显示图
     */
    public void showGraph() {
        for (int[] link : matrix) {
            System.out.println(Arrays.toString(link));
        }
    }

    /**
     * 迪杰斯特拉算法
     *
     * @param index 表示出发顶点对应的下标
     */
    public void dsj(int index) {
        vv = new VisitedVertex(vertex.length, index);
        update(index); // 更新 index 顶点到周围顶点的距离和前驱顶点
        for (int j = 1; j < vertex.length; j++) {
            index = vv.updateArr(); // 选择并返回新的访问节点
            update(index); // 更新 index 顶点到周围顶点的距离和前驱顶点
        }
    }

    /**
     * 更新 index 下标顶点到周围顶点的距离和周围定额点的前驱顶点
     *
     * @param index
     */
    private void update(int index) {
        int len = 0;
        // 根据遍历我们的邻接矩阵的 matrix[index] 行
        for (int j = 0; j < matrix[index].length; j++) {
            // len 含义是:出发顶点到 index 顶点的距离 + 从 index 顶点到 j 顶点的距离的和
            len = vv.getDis(index) + matrix[index][j];
            // 如果 j 顶点没有被访问过,并且 len 小于出发顶点到 j 顶点的距离,就需要更新
            if (!vv.in(j) && len < vv.getDis(j)) {
                vv.updatePre(j, index); // 更新 j 顶点的前驱为 index 顶点
                vv.updateDis(j, len); // 更新出发顶点到 j 顶点的距离
            }
        }
    }
}

// 已访问顶点集合
class VisitedVertex {
    // 记录各个顶点是否访问过 1 表示访问过,0 表示未访问,会动态更新
    private int[] already_arr;
    // 每个下标对应的值为前一个顶点下标,会动态更新
    private int[] pre_visited;
    // 记录出发顶点到其他所有顶点的距离,比如 G 为出发顶点,就会记录 G 到其他顶点的距离,会动态更新,求的最短距离就会存放到 dis
    private int[] dis;

    /**
     * 构造器初始化
     *
     * @param length 表示顶点的个数
     * @param index  出发顶点对应的下标
     */
    public VisitedVertex(int length, int index) {
        this.already_arr = new int[length];
        this.pre_visited = new int[length];
        this.dis = new int[length];
        // 初始化 dis
        Arrays.fill(dis, 65535);
        this.already_arr[index] = 1; // 设置出发顶点被访问过
        this.dis[index] = 0; // 设置出发顶点的访问距离为 0
    }

    /**
     * 判断 index 顶点是否被访问过
     *
     * @param index 顶点下标
     * @return 如果访问过,就返回 true,否则 返回 false
     */
    public boolean in(int index) {
        return already_arr[index] == 1;
    }

    /**
     * 更新出发顶点得到 index 顶点的距离
     *
     * @param index 顶点下标
     * @param len   长度(距离)
     */
    public void updateDis(int index, int len) {
        dis[index] = len;
    }

    /**
     * 更新 pre 顶点的前驱顶点为 index 顶点
     *
     * @param pre   要更新的顶点
     * @param index 跟新顶点
     */
    public void updatePre(int pre, int index) {
        pre_visited[pre] = index;
    }

    /**
     * 返回出发顶点到 index 顶点的距离
     *
     * @param index 顶点
     */
    public int getDis(int index) {
        return dis[index];
    }

    /**
     * 继续选择并返回新的访问顶点
     *
     * @return
     */
    public int updateArr() {
        int min = 65535, index = 0;
        for (int i = 0; i < already_arr.length; i++) {
            if (already_arr[i] == 0 && dis[i] < min) {
                min = dis[i];
                index = i;
            }
        }
        // 更新 index 顶点被访问过
        already_arr[index] = 1;
        return index;
    }

    /**
     * 显示最后的结果
     * 即将三个数组的情况输出
     */
    public void show() {

        System.out.println("=======================================");
        // 输出 already_arr
        for (int i : already_arr) {
            System.out.print(i + " ");
        }
        System.out.println();
        // 输出 pre_visited
        for (int i : pre_visited) {
            System.out.print(i + " ");
        }
        System.out.println();
        // 输出 dis
        for (int i : dis) {
            System.out.print(i + " ");
        }
        System.out.println();
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int count = 0;
        for (int i : dis) {
            if (i != 65535) {
                System.out.print(vertex[count] + "(" + i + ") ");
            } else {
                System.out.println("N ");
            }
            count++;
        }
    }
}

你可能感兴趣的:(数据结构和算法,算法)