代码随想录算法训练营day42|Leetcode416(背包问题)

Leetcode416

力扣

代码随想录算法训练营day42|Leetcode416(背包问题)_第1张图片

 思路:

       首先判断这道题是用背包问题中的哪一种,是用01背包还是完全背包

背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。

要注意题目描述中商品是不是可以重复放入。

即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

那么来一一对应一下本题,看看背包问题如果来解决。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,我们就可以套用01背包,来解决这个问题了。

首先确定01背包问题的递推公式(这里我是直接背公式的)

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值可以最大为dp[j]。

本题中每一个元素的数值即是重量,也是价值。

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

递推顺序:

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!很明显 我们这里是一维背包

代码:

def canPartition(self, nums: List[int]) -> bool:
        target = sum(nums)
        if target % 2 == 1: return False
        target //= 2
        dp = [0] * 10001
        for i in range(len(nums)):
            for j in range(target, nums[i] - 1, -1):
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
        return target == dp[target]

你可能感兴趣的:(算法,开发语言,python,leetcode)