关注并星标腾讯云开发者
每周1 | 鹅厂工程师带你审判技术
第1期 | 李志瑞:AI 届新语言 Mojo 要火?
前段时间 Modular 发布了一个新语言 Mojo,这语言不止官网放了巨大的 emoji ,而且它的标准文件后缀一个是「.mojo」另一个是「. 」,一副立马要火的样子呢。
说实话,这个用 emoji 做后缀名的操作其实挺无聊,也有点败好感,但如果说这个语言能在完全兼容 Python 的基础上大幅提高执行效率,并且作者是 LLVM 发起人 Chris Lattner,是不是突然又有兴趣继续了解它了呢?
Mojo 被设计为 Python 语言的超集,并增加了许多特性,包括:
▶︎ Progressive types: 能利用类型信息获得更好性能和静态检查,但又不强制要求写类型。
▶︎ Zero cost abstractions: C++ 的核心设计准则,能够避免用户为了性能放弃合理设计的代码。
▶︎ Ownership + borrow checker: Rust 语言的安全性来源,在编译期避免许多错误的发生。
▶︎ The full power of MLIR: 原生支持对 MLIR 的直接访问,能够从底层扩展系统。
在 Mojo 这个语言的介绍中反复提到 AI,官网也说它是「a new programming language for all AI developers」。那么为什么 AI 开发需要一个新语言呢?首先,我们知道在 AI 届具有统治地位的语言就是 Python,Python 是一个语法简单清晰,容易上手,且灵活度很高的语言,深受广大程序员喜爱,XKCD 上有就这么一幅漫画:
当然,受人喜爱的语言有很多,Python 成为 AI 届的统治语言除了本身易用之外,也有惯性的因素。由于 Python 上机器学习相关的库多,因此机器学习从业者用的就多,这又反过来令新的机器学习相关库优先为 Python 提供接口,进一步加强了其统治地位。因此,为了逐步渗透这个用户群,Mojo 兼容 Python 是很正确的一个选择。Mojo 不仅承诺语法是 Python 的超集,并且它还能直接调用 Python 的库,这意味着 Mojo 不需要从零开始构建自己的生态,本身就可以用上繁荣的 Python 生态了。
虽然 Python 很好,但它有一个众所周知的问题,那就是太慢了。而机器学习本身又需要繁重的计算,因此 Python 生态中大量库的底层其实都是用高性能的语言(如 C/C++)进行实现,然后再提供一个 Python 接口供用户调用,典型的如 numpy 这种数学库。在这种情况下,Python 事实上是被作为一个胶水语言来使用,这造成了开发的碎片化,如果一个用户只是简单调一下库那还好说,但一旦到了工业界,开发过程中不可避免地就要涉及一些底层库的修改,甚至直接换语言来实现同样的功能以提高性能,这种割裂不止增加了开发成本和精神负担,而且考虑到众多擅长 C/C++ 语言的开发者也并不是 AI 领域专家,这种开发人员能力的不适配也对整个 AI 生态的发展形成了一定阻碍。
因此,Mojo 的目的就是要在 Python 生态的基础上,让用户能用一个语言,从使用易用的接口,到开发复杂的库,再到实现底层黑科技,统一实验和生产环境所用的语言。为了实现这个目的,Mojo 扩展了 Python 语法,支持了紧凑的内存布局,并引入了一些现代的语言特性(例如 Rust 的安全性检查),使得这个语言能够渐进式地在 AI 界立足。说起来 Chris Lattner 在这方面可以算是经验丰富了,不管是在 gcc/msvc 的统治下实现 clang,还是在 objective-c 的统治下为苹果实现 swift,都是一个逐步蚕食对手市场的过程。
说了这么多,该来看看 Mojo 长什么样了。现在 Mojo 还不能直接下载使用,如果想要尝鲜,需要在官网申请,然后在 playground 页面中试用,这是一个基于 Jupyter 的页面,可以混合笔记和可执行的 Mojo 代码。
前面提到,Mojo 的语法是 Python 的超集,因此 Mojo 的 Hello World 也跟 Python 一样简单:
与 Python 一样,Mojo 也使用换行符和缩进来定义代码块:
上面的代码中使用 var 来声明变量 x,使用 let 来声明了不可变量 y。Mojo 像很多较新近的语言一样,让不可变量的声明变得简单,以鼓励开发者使用不可变的量。另外注意到这里定义函数使用了 fn 而非 Python 的 def,这是因为 Mojo 希望在兼容 Python 的基础上加入编译期的检查和优化,而 Python 过于动态的语法很难支持这一目标,因此,Mojo 同时支持使用 fn 和 def 两个关键字来声明函数,对于调用者来说,这两种方法声明出来的函数没有什么区别,但对于实现者来说,可以将 fn 看作「严格模式」下的 def,例如下面的代码会编译错误(如果改成用 def 则不会出错):
虽然官方承诺 Mojo 的语法是 Python 的超集,但目前 Mojo 还在开发中,很多 Python 语法都还不支持,例如目前连 Python 的 class 都无法被编译通过:
不过,Mojo 现在先提供了另一个用来组织数据的关键字 struct,相比于 class,struct 更加静态可控,便于优化。一方面,struct 支持类似 Python class 风格的函数声明和运算符重载。而另一方面,struct 又类似于 C++ 的 struct 和 class,内部的成员在内存中紧凑排布,而且不支持在运行时动态添加成员和方法,便于编译期进行优化,例如:
虽然有点不同,但整体上看起来还是非常熟悉的对吧。说到这里,有一点需要提醒各位注意,尽管 Mojo 之后会令语法成为 Python 语法的超集,但其语义则有时会和 Python 不同,这意味着 Python 的代码直接拷到 Mojo 里可能会出现编译通过但执行结果不同的情况,这里简单提一个比较常见的例子:函数传参。在 Python 中,函数传参的语义类似于 C++ 的传指针,在函数内部虽然不能更改调用者指向的对象,但可以改变该对象内部的状态,例如下面的代码:
在 Python 中,这段代码打印出来的结果是两次 [5, 2, 3]。但在 Mojo 中,使用 def 定义的函数默认的传递逻辑是复制值,也就是说,尽管在函数中能够修改参数内部的状态,但修改对于调用方来说是不可见的,因此上面这段代码在 Mojo 中打印的结果是 [5, 2, 3](foo 内部)和 [1, 2, 3](foo 外部)。
除了语法像 Python,Mojo 非常务实的一点在于它构建于 Python 的生态之上。因此即便 Mojo 还没能完整支持 Python 的语法,它还是优先支持了对 Python 库的调用,以便让开发者能受益于庞大完善的 Python 的生态。例如下面的代码就使用了 Python 的 numpy 库:
Mojo 作为一个新语言,广泛吸收许多现代的程序语言设计思想,例如 Rust 的所有权和借用检查,以此提升代码的安全性。在 Mojo 中,使用 fn 定义的函数的参数默认传的是不可变的引用,即「借用」,调用方仍然拥有其所有权,因此在函数内部不可以对参数进行修改。Mojo 提供了一个 borrow 关键字来标注这样的参数传递情况,对于 fn 来说是可以省略的,也就是说下面 foo 函数中两个参数的传递方式相同:
在 Rust 中,传参的默认行为是移动,如果需要借用则需要在传入时加上 &,这两种方式倒是没有太大的优劣之分,Mojo 的行为可能更接近于 Python 这类高级语言的习惯。如果想要修改传入的参数,则需要手动注明 inout,例如:
按道理说,Mojo 应该像 Rust 一样规避一个变量同时被可变和不可变借用,也应该规避同时被可变借用,但目前 Mojo 编译器似乎还没实现这一特性,例如下面的代码还是能编译通过的:
从这也可以看出 Mojo 确实还处在比较早期的发展阶段。
另一个重要的内存安全概念是对象的所有权,当一个函数获取了对象的所有权后,调用方就不应该再去使用这个对象了,例如我们实现了一个只支持移动的类型 UniquePtr:
同时,我们有两个函数,其中,use_ptr 使用了前面提到的 borrow 关键字,借用了 UniquePtr 对象,而 take_ptr 则使用 owned 关键字,指明它需要获取传入对象的所有权。那么,在调用 take_ptr 的时候,我们就需要在参数后面加上 ^ 后缀,用来表明我们将所有权转移给 take_ptr:
因此,如果我们将 use_ptr 和 take_ptr 的调用顺序调换一下,就会出现编译错误:
Mojo 的另一个强大之处在于它让对 MLIR>) 的操作变得更简单。MLIR 全称是 Multi-Level Intermediate Representation,是一个编译器开发框架,它存在的目的是通过定义多种方言来逐级将代码转换为机器码,以降低编译器的开发成本。在 MLIR 之前,一个广为人熟知的 IR 是 LLVM IR,一个语言的编译器作者可以通过将自己的语言编译为 LLVM IR 来接入 LLVM 的工具链,使得编译器作者不需要关心底层具体硬件的差别,实现了对底层编译工具链的复用:
但 LLVM IR 层级过低,难以进行特定于语言本身的优化,从上面的图中也能看出,各个语言为了实现语言本身的优化,都在编译为 LLVM IR 之前加入了自己的 IR。另外 LLVM IR 扩展起来也非常困难,难以适应复杂异构计算的要求,而异构计算在 AI 开发中又非常普遍。MLIR 相比于之前的 IR,更加模块化,仅保留了一个非常小的内核,方便开发者进行扩展。很多编译器将代码编译为 MLIR,而 Mojo 提供了直接访问 MLIR 的能力,这使得 Mojo 能够受益于这些工具。更多关于 MLIR 的内容可以参考这一系列文章:编译器与中间表示: LLVM IR, SPIR-V, 以及 MLIR,这里就不做过多赘述,我们主要关注在 Mojo 中可以如何操作 MLIR。举例而言,如果我们希望实现一个新的 boolean 类型 OurBool,我们可以这样实现:
这里定义了一个类型为 OurBool 的类型,里面有一个直接使用 MLIR 内置类型 i1 的成员 value 。在 Mojo 中,我们可以通过 mlir_type.typename 的形式来访问 MLIR 类型。接着,我们为这个类型提供了两个构造函数,默认情况下构造为 OurFalse 也可基于传入的参数进行构建。最下面的 __bool 也和 Python 的 bool 一样,用于使该类型具有和内置 boolean 类型的性质,此时我们可以这样使用它:
除了使用 MLIR 之外,Mojo 甚至可以允许开发者使用 MLIR 实现逻辑,例如下面的代码中通过应用 MLIR 的 index.casts 操作来实现类型转换,然后再通过 index.cmp 对值进行比较:
基于封装好的 eq 方法,我们可以很容易实现 invert 方法:
此时,我们就可以对 OurBool 类型的对象使用 ~ 操作符了:
通过这个简单的例子我们可以看出,在 Mojo 中,开发者可以通过访问 MLIR 来实现和内置类型同等高效的类型。这使得开发者可以在 Mojo 上为新硬件的数据类型封装高效简单的 Mojo 接口而不需要切换语言。虽然大部分开发者并不需要接触 MLIR,但 Mojo 为更深入和更底层的优化提供了充分的可能性。
虽然 Mojo 反复强调它是为 AI 设计的新语言,但以目前 Mojo 的设计方向来看,它的发展前景并不止于 AI。本质上 Mojo 提供了一个能够兼容 Python 生态的高性能语言,且这个语言可以让 Python 开发者几乎无痛地切换过去,那 Python 开发者何乐而不为呢?对于使用 Mojo 的开发者来说,上层业务可以将 Mojo 当 Python 一样使用,享受到简明的语法带来的高开发效率,当出现性能瓶颈的时候,也不用切换语言去进行优化,直接使用 Mojo 重构模块即可。虽然现在还没法在生产环境中验证这个想法,但这个未来听起来确实非常美好。关于 Mojo 和 Python 开发性能的对比,您可浏览 Mojo 发布会上的 Jeremy Howard demo for Mojo launch 视频。
目前 Mojo 还在比较早期的阶段,不仅许多语言特性都还没实现,而且连本地开发的套件都没有提供。不过其发展路线和设计思路都非常务实 ,又有一个足够专业的领导者和公司作为背景支撑,可以说是未来可期,也非常希望这个语言能在其他领域得到更广泛的应用。