高等数学:线性代数-第三章

文章目录

  • 第3章 矩阵的初等变换与线性方程组
    • 3.1 矩阵的初等变换
    • 3.2 矩阵的秩
    • 3.3 方程组的解

第3章 矩阵的初等变换与线性方程组

3.1 矩阵的初等变换

矩阵的初等变换 下面三种变换称为矩阵的初等变换

对换两行(列),记作 r i ↔ r j ( c i ↔ c j ) r_{i} \leftrightarrow r_{j} (c_{i} \leftrightarrow c_{j}) rirj(cicj)
以数 k ≠ 0 k \ne 0 k=0 乘某一行(列)中的所有元,记作 r i × k ( c i × k ) r_{i} \times k ( c_{i} \times k ) ri×kci×k
把某一行(列)所有元的 k 倍加到另一行(列)对应的元上去,记作 r i + k r i ( c i + k c i ) r_{i} + kr_{i} ( c_{i} + kc_{i} ) ri+krici+kci
矩阵等价 如果矩阵 A \bm{A} A 经过优有限次初等变换变成矩阵 B \bm{B} B ,就称矩阵 A \bm{A} A 与矩阵 B \bm{B} B 等价,记作 A ∼ B \bm{A} \sim \bm{B} AB .

矩阵等价满足:
A ∼ A \bm{A} \sim \bm{A} AA

A ∼ B \bm{A} \sim \bm{B} AB

B ∼ A \bm{B} \sim \bm{A} BA

A ∼ B \bm{A} \sim \bm{B} AB
B ∼ C \bm{B} \sim \bm{C} BC

A ∼ C \bm{A} \sim \bm{C} AC
定理 设 A \bm{A} A B \bm{B} B m × n m \times n m×n矩阵,那么

A ∼ r B \bm{A} \overset{r}{\sim} \bm{B} ArB的充分必要条件是 ∃ P = ( p i j ) m × m ,   ∣ P ∣ ≠ 0    s . t .   P A = B \exists \bm{P} = (p_{ij})_{m \times m},~|\bm{P}| \ne 0 ~~ s.t.~\bm{P}\bm{A}=\bm{B} P=(pij)m×m, P=0  s.t. PA=B
A ∼ r B \bm{A} \overset{r}{\sim} \bm{B} ArB的充分必要条件是 ∃ Q = ( q i j ) n × n ,   ∣ Q ∣ ≠ 0    s . t .   A Q = B \exists \bm{Q} = (q_{ij})_{n \times n},~|\bm{Q}| \ne 0 ~~ s.t.~\bm{A}\bm{Q}=\bm{B} Q=(qij)n×n, Q=0  s.t. AQ=B
A ∼ B \bm{A} \sim \bm{B} AB的充分必要条件是 ∃ P = ( p i j ) m × m ,   Q = ( q i j ) n × n ,   ∣ P ∣ ≠ 0 ,   ∣ Q ∣ ≠ 0    s . t .   P A Q = B \exists \bm{P} = (p_{ij})_{m \times m},~ \bm{Q} = (q_{ij})_{n \times n},~ |\bm{P}| \ne 0,~ |\bm{Q}| \ne 0 ~~ s.t.~ \bm{PAQ}=\bm{B} P=(pij)m×m, Q=(qij)n×n, P=0, Q=0  s.t. PAQ=B

3.2 矩阵的秩

子式 在 m × n m \times n m×n矩阵 A \bm{A} A中,任取 k 行 k 列,位于这些行列交叉处的 k 2 k^{2} k2 个元素,不改变它们在 A \bm A A中所处的位置次序而得的 k 阶行列式,称为矩阵 A \bm A A的 k 阶子式。

秩 若矩阵 A \bm A A中存在一个不为零的 r 阶子式,且所有 r+1 阶子式全为零,那么数 r 称为矩阵 A \bm A A 的秩,记作 R ( A ) R(\bm A) R(A). 规定零矩阵的秩为 0 .

矩阵的秩有以下性质:
0 ≤ R ( ( a i j ) m × n ) ≤ min ⁡ { m , n } R ( ( A ) T ) = R ( A ) ∣ ( a i j ) n × n ∣ = 0 ,   R ( ( a i j ) n × n ) < n 0\leq R((a_{ij})_{m \times n})\leq\min\{m,n\} R((\bm A)^\mathrm T) = R(\bm A) |(a_{ij})_{n \times n}|=0,~ R((a_{ij})_{n \times n})0R((aij)m×n)min{m,n}R((A)T)=R(A)(aij)n×n=0, R((aij)n×n)<n
A ∼ B \bm A\sim\bm B AB ,则 R ( A ) = R ( B ) max ⁡ { R ( A ) , R ( B ) } ≤ R ( A , B ) ≤ R ( A ) + R ( B ) R(\bm A)=R(\bm B) \max\{R(\bm A),R(\bm B)\}\leq R(\bm A,\bm B)\leq R(\bm A)+R(\bm B) R(A)=R(B)max{R(A),R(B)}R(A,B)R(A)+R(B)
R ( A + B ) ≤ R ( A ) + R ( B ) R(\bm A+\bm B)\leq R(\bm A)+R(\bm B) R(A+B)R(A)+R(B)
R ( A B ) ≤ min ⁡ { R ( A ) , R ( B ) } R(\bm{AB})\leq\min\{R(\bm A),R(\bm B)\} R(AB)min{R(A),R(B)}
A m × n B n × l = O \bm{A}_{m \times n}\bm{B}_{n \times l}=\bm O Am×nBn×l=O,则 R ( A ) + R ( B ) ≤ n R(\bm A)+R(\bm B) \leq n R(A)+R(B)n

3.3 方程组的解

n \bm n n 元齐次线性方程组解的判定 n 元齐次线性方程组 A x = 0 \bm{Ax}=\bm{0} Ax=0 解的情况如下:

有非零解的充分必要条件是 R ( A ) < n R(\bm A)R(A)<n,即 ∣ A ∣ = 0 | \bm A | = 0 A=0
只有零解的充分必要条件是 R ( A ) = n R(\bm A)=n R(A)=n ,即 ∣ A ∣ ≠ 0 |\bm A|\ne0 A=0
n \bm n n 元非齐次线性方程组解的判定 n 元非齐次线性方程组 A x = b \bm{Ax}=\bm{b} Ax=b 解的情况如下:

无解的充分必要条件是 R ( A ) < R ( A , b ) R(\bm A)R(A)<R(A,b)
有解的充分必要条件是 R ( A ) = R ( A , b ) R(\bm A)=R(\bm A,\bm b) R(A)=R(A,b) ,其中
有惟一解的充分必要条件是 R ( A ) = R ( A , b ) = n R(\bm A)=R(\bm A,\bm b)=n R(A)=R(A,b)=n
有无穷多解的充分必要条件是 R ( A ) = R ( A , b ) < n R(\bm A)=R(\bm A,\bm b)R(A)=R(A,b)<n
矩阵方程解的判定 矩阵方程 A X = B \bm{AX}=\bm{B} AX=B 解的情况如下:

无解的充分必要条件是 R ( A ) < R ( A , B ) R(\bm A)R(A)<R(A,B)
有解的充分必要条件是 R ( A ) = R ( A , B ) R(\bm A)=R(\bm A,\bm B) R(A)=R(A,B)

你可能感兴趣的:(#,线性代数,高等数学,线性代数,决策树,机器学习)