- (Python基础篇)字典的操作
EternityArt
基础篇python开发语言
一、引言在Python编程中,字典(Dictionary)是一种极具灵活性的数据结构,它通过“键-值对”(key-valuepair)的形式存储数据,如同现实生活中的字典——通过“词语(键)”快速查找“释义(值)”。相较于列表和元组的有序索引访问,字典的优势在于基于键的快速查找,这使得它在处理需要频繁通过唯一标识获取数据的场景中极为高效。掌握字典的操作,能让我们更高效地组织和管理复杂数据,是Pyt
- LLM中 最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息吗?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython机器学习算法深度学习人工智能
LLM中最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息吗?在大语言模型(LLM)中,最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息,这是由LLM的核心架构(以Transformer为基础)决定的,具体可以从以下角度理解:1.核心机制:自注意力(Self-Attention)的作用现代LLM(如GPT系列、Qwen等)均基于Transformer架构,其核心是自注意力机制。在
- LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython计算机视觉人工智能机器学习算法深度学习
LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的有个假设:就是最后一个词语融合了前面词语的信息减法操作主要用于提取模型内部表征中的"诚实性"概念向量。具体来说,这是通过对比诚实和不诚实场景下的模型隐藏状态实现的。importtorchfromtransformersimportAutoModelForCausalLM,AutoTokenizer,AutoConfigimportnum
- 常见代码试题
指针概念辨析指针-指针得到的是指针和指针值之间的元素个数整形指针解引用访问4个字节指针可以比较大小整形指针+1意味着向后偏移4个字节当使用free释放掉一个指针内容后,指针变量的值不会被更改,需要手动置NULL野指针是指向未分配或者已经释放的内存地址char*p="hello";中p指向字符串第一个元素地址数组指针是指针;指针数组是数组int*fun(inta,intb)与(int*)fun(in
- 实体对象辨析(POCO、Entity、Model、DTO、BO、DO、PO)
weixin_33981932
runtime数据库java
为什么80%的码农都做不了架构师?>>>POCO(PlainOldCLRObject)源自JavaEE编程领域的POJO概念(2000年由MartinFowler提出)和POTS(PlainOldTelephoneService)概念。POCO被应用于面向.NET框架的CLR(CommonLanguageRuntime,公共语言运行时)。但是POCO本身不依赖于外部框架,它是PLAIN的。POCO
- 【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
G皮T
#大语言模型人工智能LLM大语言模型chatgptdeepseekDeepSeek-R1DeepSeek-V3
ChatGPT、DeepSeek-R1、DeepSeek-V3辨析1.ChatGPT对比DeepSeek1.1技术相似点1.2主要差异1.3关键区别1.4如何选择1.5总结2.DeepSeek-R1对比DeepSeek-V32.1DeepSeek-R12.2DeepSeek-V32.3核心区别总结2.4如何选择3.R1和V3有什么含义3.1DeepSeekR1的"R"3.2DeepSeekV3的"
- 系统、架构、结构思维辨析
深海科技服务
IT应用探讨架构大数据服务器linux程序人生
一、什么是系统、架构、结构思维系统式思维、架构式思维和结构化思维都是解决复杂问题的重要思维方式,它们之间既有联系又有区别。1.系统式思维(SystemsThinking)定义:系统式思维是一种宏观的、整体性的思考方式,它关注事物作为一个整体的运作方式,以及其组成部分之间如何相互关联、相互影响。它强调理解事物内部的结构、模式、周期和反馈回路,而不是孤立地看待某个问题或某个部分。核心思想:整体性:看到
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 基于KANO模型的调研问卷设计避坑
Alex艾力的IT数字空间
产品经理原型模式产品运营交互设计规范腾讯会议蓝湖
KANO模型调研中,设计无引导性偏差的问卷需遵循中立表述、选项平衡、逻辑验证原则。一、避免引导性偏差的核心策略1.问题中性化设计禁用倾向性词汇:避免“优化”“提升”等暗示性词语,改用中性描述。❌引导性:“增加扫码支付功能会让体验更好吗?”✅中性化:“扫码支付功能的存在对您来说如何?”对称性表述:正向/反向问题结构完全对仗,仅改变核心条件。正向:“提供XX功能时,您的满意度如何?”反向:“不提供XX
- 云计算和云服务有啥区别
云计算技术在近些年成为了很多人口中的口头禅,然而我们还注意到,在谈论云计算这种技术的过程当中,除了“云计算”这个词之外,往往还会提及“云服务”,对于这样两个词语来说,其在商业模式的运作以及平台管理等方面究竟有何区别呢?云计算和云服务区别是什么?提到云计算,不少人会想起三个词汇——IaaS、PaaS和SaaS,单从字面来讲,其中的S是Service(服务)的缩写,也是云计算最典型的三种服务模式。不太
- 机器学习路径规划中的 net 和 netlist 分别是什么?
勤奋的大熊猫
MachineLearning机器学习人工智能自动寻路
机器学习路径规划中的net是什么?引言正文net含义netlist含义引言当我们使用机器学习训练自己的模型来进行自动寻路时,通常,我们会遇到一个名为net的词语,这里我们将对这个单词的意思进行解释。正文net含义net:中文翻译为网络,在机器学习中其中文应该翻译为连线任务。通常在连线任务中我们需要将给定的两个端点连接起来。比如给定的端点为:self.netlist=[('mmi:out1','mm
- 扎根理论编码的操作
编码是一个对于深度访谈资料中的词句、段落等片段不断进行分析概括和归纳标识的过程。开放式编码是指对访谈资料的词句和片段进行概念化、抽象化的标示。它既可以是访谈对象所使用的生动、鲜明的词语,也可以是研究人员从资料阅读中所抽象出的名词和概念。关联式编码的目的就是理清各个概念及其之间的相互关系,通过对概念之间关系的反复思考和分析,整合出更高抽象层次的范畴,并确定相关范畴的性质和维度。选择式编码的任务则是系
- 解释LLM怎么预测下一个词语的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型python深度学习人工智能机器学习
解释LLM怎么预测下一个词语的通过上文词的向量进行映射在Transformer架构的大语言模型(如GPT系列、BERT等)中,词语会先被转化为词向量。在预测下一个词时,模型会基于之前所有词的向量表示(并非仅仅上一个词,但上一个词的向量是重要信息来源之一)进行计算。以GPT-2为例,在生成文本时,它会将输入文本中每个词对应的词向量依次输入到模型的多层Transformer编码器-解码器结构中。每一层
- [AI笔记]-Word2Vec面试考点
Micheal超
AI笔记人工智能笔记word2vec
✅一、基础认知类什么是Word2Vec?它的基本思想是什么?关键词:将词语转换为向量表示;捕捉语义关系;基于上下文预测Word2Vec与One-hot编码的区别?关键词:维度灾难(维度过高,存储空间大)、高稀疏性、语义表达能力(没有距离概念,无法计算相似度)、内积关系Word2Vec的两种模型是什么?它们有何区别?答案:Word2Vec的重要假设:文本中离得越近的词语相似度越高。主要有:CBOW(
- NLP随机插入
Humbunklung
机器学习自然语言处理人工智能pythonnlp
文章目录随机插入示例Python代码示例随机插入随机插入是一种文本数据增强方法,其核心思想是在原句中随机选择若干位置,插入与上下文相关的词语,从而生成新的训练样本。这种方法能够增加句子的多样性,提高模型对不同词序和表达方式的鲁棒性。示例原句:机器学习可以提升数据分析的效率。随机插入后(插入“显著”):机器学习可以显著提升数据分析的效率。Python代码示例下面是一个简单的随机插入实现,假设我们有一
- AIDeepSeekLe - Typecho AI摘要生成插件
独立开发者阿乐
原创人工智能数据库aiAI写作
文章目录生成文章标题的方法标题优化技巧功能特点安装方法配置说明使用方法手动生成摘要自动生成摘要摘要显示插件优势框架设计核心文件工作流程数据存储常见问题生成文章标题的方法理解文章的核心主题和关键信息,确保标题能准确概括内容。分析目标读者群体,根据受众的兴趣和需求调整标题风格。使用简洁有力的词语,避免冗长或复杂的表达,保持标题清晰易懂。考虑使用疑问句或数字列表等吸引眼球的句式,增加标题的吸引力。标题优
- 随机过程chap1基本概念
八点叫什么
随机过程笔记
思维导图(受伤了,一整张的太大塞不上来)重点知识辨析一维概率密度求解指路例题5、例题6两道例题给出了求解概率密度的两种思路:显式分布直接套原概率密度公式求解(如正态分布)隐式分布先求分布函数再进行求导得概率密度函数(如指数分布)带入原题细致分析——ex5<
- 矩阵阶数(线性代数) vs. 张量维度(深度学习):线性代数与深度学习的基石辨析,再也不会被矩阵阶数给混淆了
Ven%
简单入门pytorch线性代数矩阵深度学习pytorchtensor张量人工智能
文章目录前言第一部分:重温矩阵阶数-方阵的专属标签第二部分:深入张量维度-深度学习的多维容器第三部分:核心区别总结第四部分:在深度学习中为何混淆?如何区分?结论前言在线性代数的殿堂里,“矩阵阶数”是一个基础而明确的概念。然而,当我们踏入深度学习的领域,面对的是更高维的数据结构——张量(Tensor),描述其大小的术语变成了“维度(Dimensions)”或更精确地说“形状(Shape)”。这两个概
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- Linux文本处理三剑客实战指南:grep、sed、awk
目录三剑客简介与对比grep:文本搜索利器✂️sed:流编辑与批量替换awk:文本分析与格式化输出⚔️易混辨析与命令对比实战案例集锦高频面试问答️进阶技巧与最佳实践三剑客组合实战常见错误与排查建议1.三剑客简介与对比grep:按模式搜索文本,输出匹配行,适合快速查找和过滤。sed:流编辑器,支持查找、替换、插入、删除等批量文本处理。awk:强大的文本分析与报告生成工具,支持条件判断、格式化输出、统
- 微服务架构下对内服务与对外服务的区分实现机制
weixin_47233946
编程架构微服务云原生
##引言在现代分布式系统架构中,微服务的边界界定直接影响着系统的安全性、可维护性和扩展性。本文深入探讨微服务架构中内部服务(InternalServices)与对外服务(ExternalServices)的核心差异,并提供多种经过验证的实施方案与最佳实践。##一、核心概念辨析###1.1对内服务(InternalServices)-**特点**:服务间私有API-**数据流**:仅限于服务网格内部
- ICPC英语终极通关指南:从WA到AC的语言突破之路
小羊斩肖恩
算法算法数据结构
ICPC英语终极通关指南:从WA到AC的语言突破之路你是否曾经因为看不懂题目而与AC失之交臂?根据统计,非英语母语选手在ICPC比赛中平均多花费46%的时间理解题目。这篇指南将帮助你彻底突破语言障碍,让英语不再成为你通往世界总决赛的绊脚石!目录为什么英语是ICPC的隐形Boss核心词汇速查表题目结构黄金模板数学词汇完全手册算法术语必背清单易混淆短语辨析实战案例解析21天突破计划彩蛋:比赛现场急救包
- 微搭低代码实战课开篇:从概念到实践,开启你的低代码之旅
低代码布道师
家政维修平台技术全攻略低代码
目录1.拨云见日:到底什么是低代码?2.前世今生:低代码的演进之路3.群雄逐鹿:国际主流低代码产品巡礼4.落地生根:国内低代码产品与协同办公的“联姻”5.概念辨析:低代码、无代码、模型驱动与表单驱动6.修炼之道:如何学习低代码?“学、练、问、悟”四步法各位同学,大家好!欢迎来到为期两周的微搭低代码实战课。在接下来的十天里,我将带领大家从零开始,深入探索低代码的魅力,并亲手搭建出属于我们自己的应用程
- 人工智能100问☞第48问:GPT是怎么生成文本的?
AI算力那些事儿
人工智能100问人工智能gpt
目录一、通俗解释二、专业解释三、权威参考GPT生成文本的核心机制是通过Transformer架构的自回归模型,基于已输入内容逐词预测概率最高的后续词汇,循环迭代直至形成完整文本。一、通俗解释GPT生成文本就像玩文字接龙游戏,但拥有超强记忆力:1、海量阅读:它先“啃完”整个互联网的书籍文章(预训练),像学霸记下所有词语搭配规律。2、逐词接龙:当你输入提示(如“夏天午后...”),它根据前文预测最可能
- 【Elasticsearch】TF-IDF 和 BM25相似性算法
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,TF-IDF和BM25是两种常用的文本相似性评分算法,但它们的实现和应用场景有所不同。以下是对这两种算法的对比以及在Elasticsearch中的使用情况:TF-IDF-定义与原理:TF-IDF是一种经典的信息检索算法,用于评估一个词语对于一个文件集或语料库中某份文件的重要程度。它由两部分组成:-TF(TermFrequency):词频,即词语在文档中出现的次数。-
- Python实现小说词频统计
I_Scholar
pythonwindows开发语言
源码地址:python实现小说词频统计资源-CSDN文库这段代码实现了一个简单的文本分析工具,主要用于统计用户指定的词语在小说中的出现次数、位置和频次。以下是代码的详细解析和功能说明:1.功能概述选择文件:通过文件对话框选择一个小说文件。读取文件内容:将小说文件的内容读取到一个字符串中。去除标点符号:从文本中去除指定的标点符号。统计词频:统计用户指定的词语在小说中的出现次数、位置和频次。输出结果:
- 如何使用递归字符文本分割器进行文本分割
在文本处理中,分割文本是一项常见的任务,尤其在处理大段文本时,我们需要将其分割成更小的部分,以便进一步分析或处理。本文将通过一个简单易懂的示例展示如何使用递归字符文本分割器来实现这一目标。该分割器通过参数化字符列表来分割文本,默认列表为["\n\n","\n","",""],这些字符有助于尽量保持段落、句子和词语的完整性。技术背景介绍在自然语言处理中,理解文本的结构和语义关系至关重要。递归字符文本
- 云原生可观测性:追踪技术在企业级应用中的落地
AI云原生与云计算技术学院
AI云原生与云计算云原生wpfai
云原生可观测性:追踪技术在企业级应用中的落地关键词:云原生、可观测性、分布式追踪、企业级应用、微服务、OpenTelemetry、Prometheus摘要:本文深入探讨云原生环境下可观测性体系中的分布式追踪技术,从核心概念辨析到企业级落地实践展开系统分析。通过对比监控与可观测性的本质差异,解析分布式追踪的核心原理与技术架构,结合OpenTelemetry等主流标准阐述端到端追踪的实现路径。文中包含
- 实测DeepSeek分词机制:你的输入如何变成计费Token?
大千AI助手
人工智能#DeepSeek人工智能分词deepseektransformerstransformer
什么是tokentoken是DeepSeek模型处理文本的基本单位,也是API计费的核心依据。虽然可理解为“字词”,但实际分词规则比表面更复杂,通常1个中文词语、1个英文单词、1个数字或1个符号计为1个token。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文章推荐:11.英语分词进化论:B
- MVVM 模式,以及 Angular、React、Vue 和 jQuery 的区别与关系
WZMeiei
Web前端angular.jsreact.jsvue.js
目录一、先搞懂MVVM模式二、Angular、React、Vue是啥?三、和jQuery的关系与区别四、一句话总结五、Angular/React/Vue与jQuery辨析1.本质定位差异2.开发思想差异3.应用场景差异4.与jQuery的“替代”和“互补”关系总结一、先搞懂MVVM模式MVVM不是实体软件,是一种编程思想、设计模式,全称Model-View-ViewModel(模型-视图-视图模型
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt