好记性不如烂笔头,既然不够聪明,就乖乖的做笔记,温故而知新。
本文档用于本人对知识点的梳理和记录
目录
一、前言
二、器件分析
三、代码分析
四、结语
(ST生态)雅特力AT32F435/F437 QSPI驱动NAND FLASH(W25N01G/ZB35Q01A)
SPI驱动NAND FLASH比较常见,QSPI驱动NAND FLASH截至目前没有未看到太多博客,调试中也遇到一些坑,本例程也许可避免你少走弯路。
NAND FLASH的特点就不赘述了,度娘大把,这里需要注意的是NAND不能直接寻址,最小的擦除单位是block,最小的读写单位是page,以1G的W25N01或ZB35Q01A为例,1个block包含64个page,一个page 2K byte,除此之外它的cache是2K,大小同最小读写单位。
因此,在操作flash的时候需要按下图示的方法执行
RA [16:6]bit 表示是block的地址;
RA [5:0]bit 表示是page的地址,64个page是不是刚好是[5:0];
CA [11:0] 共12个bit,表示的是从cache中读出数据的起始位
a、按AT32F435 DS和RM手册配置合适的PIN脚
void qspi_config(void)
{
gpio_init_type gpio_init_struct;
/* enable the dma clock */
crm_periph_clock_enable(CRM_DMA2_PERIPH_CLOCK, TRUE);
/* enable the qspi clock */
crm_periph_clock_enable(CRM_QSPI1_PERIPH_CLOCK, TRUE);
/* enable the pin clock */
crm_periph_clock_enable(CRM_GPIOF_PERIPH_CLOCK, TRUE);
crm_periph_clock_enable(CRM_GPIOG_PERIPH_CLOCK, TRUE);
/* set default parameter */
gpio_default_para_init(&gpio_init_struct);
/* configure the io0 gpio */
gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
gpio_init_struct.gpio_mode = GPIO_MODE_MUX;
gpio_init_struct.gpio_pins = GPIO_PINS_8;
gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
gpio_init(GPIOF, &gpio_init_struct);
gpio_pin_mux_config(GPIOF, GPIO_PINS_SOURCE8, GPIO_MUX_10);
/* configure the io1 gpio */
gpio_init_struct.gpio_pins = GPIO_PINS_9;
gpio_init(GPIOF, &gpio_init_struct);
gpio_pin_mux_config(GPIOF, GPIO_PINS_SOURCE9, GPIO_MUX_10);
/* configure the io2 gpio */
gpio_init_struct.gpio_pins = GPIO_PINS_7;
gpio_init(GPIOF, &gpio_init_struct);
gpio_pin_mux_config(GPIOF, GPIO_PINS_SOURCE7, GPIO_MUX_9);
/* configure the io3 gpio */
gpio_init_struct.gpio_pins = GPIO_PINS_6;
gpio_init(GPIOF, &gpio_init_struct);
gpio_pin_mux_config(GPIOF, GPIO_PINS_SOURCE6, GPIO_MUX_9);
/* configure the sck gpio */
gpio_init_struct.gpio_pins = GPIO_PINS_10;
gpio_init(GPIOF, &gpio_init_struct);
gpio_pin_mux_config(GPIOF, GPIO_PINS_SOURCE10, GPIO_MUX_9);
/* configure the cs gpio */
gpio_init_struct.gpio_pins = GPIO_PINS_6;
gpio_init(GPIOG, &gpio_init_struct);
gpio_pin_mux_config(GPIOG, GPIO_PINS_SOURCE6, GPIO_MUX_10);
}
b、配置QSPI时钟和模式等,再尝试读取feature(SR状态寄存器),读取成功,说明QSPI通信正常,需要注意的是,需按规格书要求配置QSPI的时序。
uint8_t qspi_data_get_featrue(uint32_t addr)
{
uint8_t buf;
/* config qspi's dma mode */
qspi_dma_enable(QSPI1, TRUE);
qspi_dma_rx_threshold_set(QSPI1, QSPI_DMA_FIFO_THOD_WORD08);
/* config and enable dma */
qspi_dma_set_byte(DMA_DIR_PERIPHERAL_TO_MEMORY, (uint8_t *)&buf, 1);
/* kick command */
esmt32m_cmd_get_featrue_config(&esmt32m_cmd_config, addr, 1);
qspi_cmd_operation_kick(QSPI1, &esmt32m_cmd_config);
/* wait command completed */
while(qspi_flag_get(QSPI1, QSPI_CMDSTS_FLAG) == RESET);
qspi_flag_clear(QSPI1, QSPI_CMDSTS_FLAG);
/* wait dma completed */
while(dma_flag_get(DMA2_FDT1_FLAG) == RESET);
dma_flag_clear(DMA2_FDT1_FLAG);
qspi_dma_enable(QSPI1, FALSE);
return buf;
}
void esmt32m_cmd_get_featrue_config(qspi_cmd_type *qspi_cmd_struct, uint32_t addr, uint32_t counter)
{
qspi_cmd_struct->pe_mode_enable = FALSE;
qspi_cmd_struct->pe_mode_operate_code = 0;
qspi_cmd_struct->instruction_code = 0x0F;
qspi_cmd_struct->instruction_length = QSPI_CMD_INSLEN_1_BYTE;
qspi_cmd_struct->address_code = addr;
qspi_cmd_struct->address_length = QSPI_CMD_ADRLEN_1_BYTE;
qspi_cmd_struct->data_counter = counter;
qspi_cmd_struct->second_dummy_cycle_num = 0;
qspi_cmd_struct->operation_mode = QSPI_OPERATE_MODE_111;
qspi_cmd_struct->read_status_config = QSPI_RSTSC_HW_AUTO;
qspi_cmd_struct->read_status_enable = FALSE;
qspi_cmd_struct->write_data_enable = FALSE;
}
c、读取设备ID进一步验证通信和设备正常工作。
#if APP_CONFIG_NAND_ZB35Q01
qspi_data_read_ID(0,1,(uint8_t *)&rbuf_id);
printf("id msb=%x\r\n",rbuf_id);
qspi_data_read_ID(1,1,(uint8_t *)&rbuf_id);
printf("id lsb=%x\r\n",rbuf_id);
#elif APP_CONFIG_NAND_W25N01G
qspi_data_read_ID(0,3,rbuf_id);
printf("id lsb=%x\r\n",rbuf_id[1]);
#endif
d、以读为例,先将数据读出到cache,再从cache读出
void qspi_data_read_nand(uint16_t BlockAddr,uint8_t Pageuint16_tAddr,uint8_t wrap_flag, uint16_t r_addr, uint32_t total_len, uint8_t* buf)
{
uint32_t addr;
addr = ((uint32_t)BlockAddr << 6) + Pageuint16_tAddr;
/* kick command */
esmt32m_cmd_proread_nand_config(&esmt32m_cmd_config, addr, 0);
qspi_cmd_operation_kick(QSPI1, &esmt32m_cmd_config);
/* wait command completed */
while(qspi_flag_get(QSPI1, QSPI_CMDSTS_FLAG) == RESET);
qspi_flag_clear(QSPI1, QSPI_CMDSTS_FLAG);
qspi_busy_check();
qspi_data_read_nand_cache(wrap_flag,r_addr, total_len, buf);
}
void esmt32m_cmd_proread_nand_config(qspi_cmd_type *qspi_cmd_struct, uint32_t addr, uint32_t counter)
{
qspi_cmd_struct->pe_mode_enable = FALSE;
qspi_cmd_struct->pe_mode_operate_code = 0;
qspi_cmd_struct->instruction_code = 0x13;
qspi_cmd_struct->instruction_length = QSPI_CMD_INSLEN_1_BYTE;
qspi_cmd_struct->address_code = addr;
qspi_cmd_struct->address_length = QSPI_CMD_ADRLEN_3_BYTE;
qspi_cmd_struct->data_counter = 0;
qspi_cmd_struct->second_dummy_cycle_num = 0;
qspi_cmd_struct->operation_mode = QSPI_OPERATE_MODE_111;
qspi_cmd_struct->read_status_config = QSPI_RSTSC_HW_AUTO;
qspi_cmd_struct->read_status_enable = FALSE;
qspi_cmd_struct->write_data_enable = TRUE;
}
void qspi_data_read_nand_cache(uint8_t wrap_flag, uint16_t addr, uint32_t total_len, uint8_t* buf)
{
uint16_t app_addr;
app_addr = (((uint16_t)wrap_flag << 14) | addr);
/* config qspi's dma mode */
qspi_dma_enable(QSPI1, TRUE);
qspi_dma_rx_threshold_set(QSPI1, QSPI_DMA_FIFO_THOD_WORD08);
/* config and enable dma */
qspi_dma_set(DMA_DIR_PERIPHERAL_TO_MEMORY, buf, total_len);
/* kick command */
esmt32m_cmd_read_nand_cache_config(&esmt32m_cmd_config, app_addr, total_len);
qspi_cmd_operation_kick(QSPI1, &esmt32m_cmd_config);
/* wait command completed */
while(qspi_flag_get(QSPI1, QSPI_CMDSTS_FLAG) == RESET);
qspi_flag_clear(QSPI1, QSPI_CMDSTS_FLAG);
/* wait dma completed */
while(dma_flag_get(DMA2_FDT1_FLAG) == RESET);
dma_flag_clear(DMA2_FDT1_FLAG);
qspi_dma_enable(QSPI1, FALSE);
}
e、通过先写后读,以及擦除等步骤,验证数据存取正常
printf("start read nand\r\n");
/* program */
qspi_data_write_nand(WRITE_CACHE_ADDR, WRITE_NAND_BLOCK, WRITE_NAND_PAGES,TEST_SIZE, wbuf);
qspi_data_read_nand(READ_NAND_BLOCK, READ_NAND_PAGES,READ_NAND_WRAP,READ_CACHE_ADDR, TEST_SIZE, rbuf);
nand_flash_printf(rbuf);
printf("nand flash work end\r\n");
#if APP_CONFIG_ERASE_TEST_MODE
printf("erase start!\r\n");
qspi_erase_nand(READ_NAND_BLOCK,READ_NAND_PAGES);
qspi_data_read_nand(READ_NAND_BLOCK, READ_NAND_PAGES,READ_NAND_WRAP,READ_CACHE_ADDR, TEST_SIZE, rbuf);
#endif
if(memcmp(rbuf, wbuf, TEST_SIZE))
{
err = 1;
}
f、通过 nand_flash_printf 将读出的数据打印出来,我们可以看到和预期的结果一致。
好像也没啥难度,是吗?
有问题可以Email交流 [email protected]