原文链接
Masonry 概述
Masonry 是基于 Apple 的自动布局封装的一个轻量级布局框架。Masonry 通过一种链式的 DSL(Domain-Specific Language)来描述 NSLayoutConstraint
。相比原生的自动布局语法,Masonry 提供了更为简便的语法来构造布局。Masonry 同时支持 iOS 和 Mac OS X。
关于原生的自动布局的详细内容,可以阅读另一篇文章——《系统理解 iOS 自动布局》。
本文所分析的 Masonry 源码版本是 7.4.2
。
Auto Layout VS Masonry
苹果提供的自动布局(Auto Layout)能够对视图进行灵活有效的布局。但是,使用原生的自动布局相关的语法创建约束的过程是非常冗长的,可读性也比较差。
如下所示代码,其作用是让一个子视图填充其父视图,其中子视图的每一边相对父视图缩进 10 像素。
UIView *superview = self.view;
UIView *view1 = [[UIView alloc] init];
view1.translatesAutoresizingMaskIntoConstraints = NO;
view1.backgroundColor = [UIColor greenColor];
[superview addSubview:view1];
UIEdgeInsets padding = UIEdgeInsetsMake(10, 10, 10, 10);
[superview addConstraints:@[
// view1 constraints
[NSLayoutConstraint constraintWithItem:view1
attribute:NSLayoutAttributeTop
relatedBy:NSLayoutRelationEqual
toItem:superview
attribute:NSLayoutAttributeTop
multiplier:1.0
constant:padding.top],
[NSLayoutConstraint constraintWithItem:view1
attribute:NSLayoutAttributeLeft
relatedBy:NSLayoutRelationEqual
toItem:superview
attribute:NSLayoutAttributeLeft
multiplier:1.0
constant:padding.left],
[NSLayoutConstraint constraintWithItem:view1
attribute:NSLayoutAttributeBottom
relatedBy:NSLayoutRelationEqual
toItem:superview
attribute:NSLayoutAttributeBottom
multiplier:1.0
constant:-padding.bottom],
[NSLayoutConstraint constraintWithItem:view1
attribute:NSLayoutAttributeRight
relatedBy:NSLayoutRelationEqual
toItem:superview
attribute:NSLayoutAttributeRight
multiplier:1
constant:-padding.right],
]];
由上可见,使用原生的自动布局语法,对于如此简单的一个布局,也是非常冗长的。如果使用 VFL(Visual Format Language)可以有效减少冗余,但是其 ASCII 类型语法使得编译器无法做类型检查,存在一定的安全隐患。
Masonry 的目标其实就是 为了解决原生自动布局语法冗长的问题。对于上述示例,使用 Masonry 只需要一下几行代码即可解决。
UIEdgeInsets padding = UIEdgeInsetsMake(10, 10, 10, 10);
[view1 mas_makeConstraints:^(MASConstraintMaker *make) {
make.top.equalTo(superview.mas_top).with.offset(padding.top); //with is an optional semantic filler
make.left.equalTo(superview.mas_left).with.offset(padding.left);
make.bottom.equalTo(superview.mas_bottom).with.offset(-padding.bottom);
make.right.equalTo(superview.mas_right).with.offset(-padding.right);
}];
甚至还可以更加简单:
[view1 mas_makeConstraints:^(MASConstraintMaker *make) {
make.edges.equalTo(superview).with.insets(padding);
}];
Masonry 架构
基本组成
Masonry 主要方法由上述例子就可一窥全貌。Masonry 主要通过对 UIView
(NSView
)、NSArray
、UIViewController
进行分类扩展,从而提供自动布局的构建方法。相关方法定义在上图所示部分文件中:
View+MASAddtions
NSArray+MASAddtions
ViewController+MASAddtions
通过分类提供的自动布局构建方法主要有以下这些:
// View+MASAddtions
- (NSArray *)mas_makeConstraints:(void(NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (NSArray *)mas_updateConstraints:(void(NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (NSArray *)mas_remakeConstraints:(void(NS_NOESCAPE ^)(MASConstraintMaker *make))block;
// NSArray+Addtions
- (NSArray *)mas_makeConstraints:(void (NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (NSArray *)mas_updateConstraints:(void (NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (NSArray *)mas_remakeConstraints:(void (NS_NOESCAPE ^)(MASConstraintMaker *make))block;
- (void)mas_distributeViewsAlongAxis:(MASAxisType)axisType withFixedSpacing:(CGFloat)fixedSpacing leadSpacing:(CGFloat)leadSpacing tailSpacing:(CGFloat)tailSpacing;
- (void)mas_distributeViewsAlongAxis:(MASAxisType)axisType withFixedItemLength:(CGFloat)fixedItemLength leadSpacing:(CGFloat)leadSpacing tailSpacing:(CGFloat)tailSpacing;
上述自动布局构建方法均使用一个void(NS_NOESCAPE ^)(MASConstraintMaker *make)
类型的 block 作为参数。的确,MASConstraintMaker
就是 Mansonry 框架中构建布局约束的核心。MASConstraintMaker
引用了 MASConstraint
的一系列方法及其子类(包括:MASCompositeConstraint
、MASViewConstraint
),从而实现约束的创建与添加。
MASConstraint
则提供了一系列返回类型为 MASConstraint
的方法,从而实现了链式 DSL,使 Masonry 具备了简洁灵活的优点。
下面,我们依次来介绍 Masonry 框架中的几个重要类:
MASLayoutConstraint
MASViewAttribute
MASConstraint
MAConstraintMaker
MASLayoutConstraint
MASLayoutConstraint
类继承自 NSLayoutConstraint
类。相比其父类,它就多了一个属性 mas_key
。
MASLayoutConstraint
用来表示 布局约束。
MASViewAttribute
我们知道在自动布局系统中,约束的本质是一个方程式:
item1.attribute1 = multiplier × item2.attribute2 + constant
MASViewAttribute
就是约束方程式中一个 item
与 attribute
组成的单元。
如下所示便是 MASViewAttribute
定义的属性。
@interface MASViewAttribute : NSObject
// The view which the reciever relates to. Can be nil if item is not a view.
@property (nonatomic, weak, readonly) MAS_VIEW *view;
// The item which the reciever relates to.
@property (nonatomic, weak, readonly) id item;
// The attribute which the reciever relates to
@property (nonatomic, assign, readonly) NSLayoutAttribute layoutAttribute;
@end
其中,关于 NSLayoutAttribute
枚举所包含的类型,详见 《系统理解 iOS 自动布局》中 约束/约束规则/属性 小节。
MASConstraint
MASConstraint
是一个抽象类,主要为其子类 MASViewConstraint
和 MASCompositeConstraint
声明了一些共有的方法。MASConstraint
为这些共有的方法实现了部分功能,底层的细节实现则由其子类决定。
根据约束方程式的组成,可将这些方法分为以下几类:
- 属性操作方法(Attribute)
- 关系操作方法(Relationship)
- 倍数操作方法(Multiplier)
- 常量操作方法(Constant)
除此之外,还有优先级操作方法。
属性操作方法
属性操作方法根据对应的 NSLayoutAttribute
枚举类型创建约束属性项。
- (MASConstraint *)left;
- (MASConstraint *)top;
- (MASConstraint *)right;
- (MASConstraint *)bottom;
- (MASConstraint *)leading;
- (MASConstraint *)trailing;
- (MASConstraint *)width;
- (MASConstraint *)height;
- (MASConstraint *)centerX;
- (MASConstraint *)centerY;
- (MASConstraint *)baseline;
- (MASConstraint *)firstBaseline;
- (MASConstraint *)lastBaseline;
- (MASConstraint *)leftMargin;
- (MASConstraint *)rightMargin;
- (MASConstraint *)topMargin;
- (MASConstraint *)bottomMargin;
- (MASConstraint *)leadingMargin;
- (MASConstraint *)trailingMargin;
- (MASConstraint *)centerXWithinMargins;
- (MASConstraint *)centerYWithinMargins;
这些操作方法内部都是通过一个抽象方法实现,须由子类具体实现,该方法为:
- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute __unused)layoutAttribute
关系操作方法
关系操作方法根据 NSLayoutRelation
枚举类型创建约束关系项。
- (MASConstraint * (^)(id attr))equalTo;
- (MASConstraint * (^)(id attr))greaterThanOrEqualTo;
- (MASConstraint * (^)(id attr))lessThanOrEqualTo;
这些操作方法内部都是通过一个抽象方法实现,须由子类具体实现,该方法为:
- (MASConstraint * (^)(id, NSLayoutRelation))equalToWithRelation;
倍数操作方法
两个倍数操作方法都是抽象方法,须由子类具体实现。
- (MASConstraint * (^)(CGFloat multiplier))multipliedBy;
- (MASConstraint * (^)(CGFloat divider))dividedBy;
常量操作方法
常量操作方法内部各自调用对应的 setter
方法,而这些 setter
方法都是抽象方法,须由子类具体实现。
- (MASConstraint * (^)(MASEdgeInsets insets))insets;
- (MASConstraint * (^)(CGFloat inset))inset;
- (MASConstraint * (^)(CGSize offset))sizeOffset;
- (MASConstraint * (^)(CGPoint offset))centerOffset;
- (MASConstraint * (^)(CGFloat offset))offset;
- (MASConstraint * (^)(NSValue *value))valueOffset;
优先级操作方法
后三个优先级操作方法根据 NSLayoutPriority
枚举类型设置约束优先级,其内部都是通过调用第一个优先级操作方法实现的,该方法为抽象方法,须子类具体实现。
- (MASConstraint * (^)(MASLayoutPriority priority))priority;
- (MASConstraint * (^)())priorityLow;
- (MASConstraint * (^)())priorityMedium;
- (MASConstraint * (^)())priorityHigh;
MASViewConstraint
MASViewConstraint
是 MASConstraint
的子类,可以称之为 Masonry 中 最重要的类。
MASViewConstraint
除了能够 完整表示约束方程式 之外,还存储了约束的 优先级 属性。我们来看一下其外部属性和内部属性。
// Public
@property (nonatomic, strong, readonly) MASViewAttribute *firstViewAttribute;
@property (nonatomic, strong, readonly) MASViewAttribute *secondViewAttribute;
// Private
@property (nonatomic, strong, readwrite) MASViewAttribute *secondViewAttribute;
@property (nonatomic, weak) MAS_VIEW *installedView; // 约束被添加到的位置(视图)
@property (nonatomic, weak) MASLayoutConstraint *layoutConstraint; // 约束
@property (nonatomic, assign) NSLayoutRelation layoutRelation; // 关系
@property (nonatomic, assign) MASLayoutPriority layoutPriority; // 优先级
@property (nonatomic, assign) CGFloat layoutMultiplier; // 倍数
@property (nonatomic, assign) CGFloat layoutConstant; // 常量
@property (nonatomic, assign) BOOL hasLayoutRelation;
@property (nonatomic, strong) id mas_key;
@property (nonatomic, assign) BOOL useAnimator;
我们再来看一下 MASViewConstraint
实现的父类抽象方法。
首先,属性操作方法所调用的一个抽象方法。
- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
// 必须是没有设置过布局关系,即 hasLayoutRelation 为 NO
NSAssert(!self.hasLayoutRelation, @"Attributes should be chained before defining the constraint relation");
return [self.delegate constraint:self addConstraintWithLayoutAttribute:layoutAttribute];
}
可以看到,MASViewConstraint
其实将该方法的具体实现交给了它的代理。
其次,关系操作方法所调用的一个抽象方法。
- (MASConstraint * (^)(id, NSLayoutRelation))equalToWithRelation {
return ^id(id attribute, NSLayoutRelation relation) {
if ([attribute isKindOfClass:NSArray.class]) {
// 必须是没有设置过布局关系,即 hasLayoutRelation 为 NO
NSAssert(!self.hasLayoutRelation, @"Redefinition of constraint relation");
// 如果 attribute 是一组属性,则生成一组约束
NSMutableArray *children = NSMutableArray.new;
for (id attr in attribute) {
MASViewConstraint *viewConstraint = [self copy];
viewConstraint.layoutRelation = relation;
viewConstraint.secondViewAttribute = attr;
[children addObject:viewConstraint];
}
// 将一组约束转换成组合约束,并将代理所持有对应的约束进行替换
MASCompositeConstraint *compositeConstraint = [[MASCompositeConstraint alloc] initWithChildren:children];
compositeConstraint.delegate = self.delegate;
[self.delegate constraint:self shouldBeReplacedWithConstraint:compositeConstraint];
return compositeConstraint;
} else {
NSAssert(!self.hasLayoutRelation || self.layoutRelation == relation && [attribute isKindOfClass:NSValue.class], @"Redefinition of constraint relation");
// 如果 attribute 是单个属性,则设置约束的第二项
self.layoutRelation = relation;
self.secondViewAttribute = attribute;
return self;
}
};
}
可以看到,针对 attribute
的不同,equalToWithRelation
方法实现了不同的逻辑。
接着,倍数操作方法所调用的两个抽象方法。
- (MASConstraint * (^)(CGFloat))multipliedBy {
return ^id(CGFloat multiplier) {
NSAssert(!self.hasBeenInstalled,
@"Cannot modify constraint multiplier after it has been installed");
self.layoutMultiplier = multiplier;
return self;
};
}
- (MASConstraint * (^)(CGFloat))dividedBy {
return ^id(CGFloat divider) {
NSAssert(!self.hasBeenInstalled,
@"Cannot modify constraint multiplier after it has been installed");
self.layoutMultiplier = 1.0/divider;
return self;
};
}
可以看到,这两个方法本质上就是修改了 MASViewConstraint
的倍数属性 layoutMultiplier
。
然后,常量操作方法所调用的几个抽象方法。
// 只有约束方程式第一项的属性是:
// NSLayoutAttributeLeft、NSLayoutAttributeLeading、
// NSLayoutAttributeTop、NSLayoutAttributeBottom、
// NSLayoutAttributeRight、NSLayoutAttributeTrailing
// 时,方法才会有效设置常量属性
- (void)setInsets:(MASEdgeInsets)insets {
NSLayoutAttribute layoutAttribute = self.firstViewAttribute.layoutAttribute;
switch (layoutAttribute) {
case NSLayoutAttributeLeft:
case NSLayoutAttributeLeading:
self.layoutConstant = insets.left;
break;
case NSLayoutAttributeTop:
self.layoutConstant = insets.top;
break;
case NSLayoutAttributeBottom:
self.layoutConstant = -insets.bottom;
break;
case NSLayoutAttributeRight:
case NSLayoutAttributeTrailing:
self.layoutConstant = -insets.right;
break;
default:
break;
}
}
// setInsets 的特殊情况
- (void)setInset:(CGFloat)inset {
[self setInsets:(MASEdgeInsets){.top = inset, .left = inset, .bottom = inset, .right = inset}];
}
// 直接设置常量属性
- (void)setOffset:(CGFloat)offset {
self.layoutConstant = offset;
}
// 只有约束方程式第一项的属性是:
// NSLayoutAttributeWidth、NSLayoutAttributeHeight
// 时,方法才会有效设置常量属性
- (void)setSizeOffset:(CGSize)sizeOffset {
NSLayoutAttribute layoutAttribute = self.firstViewAttribute.layoutAttribute;
switch (layoutAttribute) {
case NSLayoutAttributeWidth:
self.layoutConstant = sizeOffset.width;
break;
case NSLayoutAttributeHeight:
self.layoutConstant = sizeOffset.height;
break;
default:
break;
}
}
// 只有约束方程式第一项的属性是:
// NSLayoutAttributeCenterX、NSLayoutAttributeCenterY
// 时,方法才会有效设置常量属性
- (void)setCenterOffset:(CGPoint)centerOffset {
NSLayoutAttribute layoutAttribute = self.firstViewAttribute.layoutAttribute;
switch (layoutAttribute) {
case NSLayoutAttributeCenterX:
self.layoutConstant = centerOffset.x;
break;
case NSLayoutAttributeCenterY:
self.layoutConstant = centerOffset.y;
break;
default:
break;
}
}
可以看到,这些 setter
方法会根据 MASViewConstraint
已有的 firstViewAttribute
约束项的约束属性 layoutAttribuet
的类型来设置常量属性。当属性不匹配值,对常量属性的设置并不会生效。
最后,优先级操作方法的一个抽象方法。
- (MASConstraint * (^)(MASLayoutPriority))priority {
return ^id(MASLayoutPriority priority) {
NSAssert(!self.hasBeenInstalled,
@"Cannot modify constraint priority after it has been installed");
self.layoutPriority = priority;
return self;
};
}
可以看到,该方法内部直接设置了 MASViewConstraint
的优先级属性 layoutPriority
。
MASCompositeConstraint
MASCompositeConstraint
也是 MASConstraint
的子类。与 MASViewConstraint
只表示一个约束不同,MASCompositeConstraint
可以表示一组约束。
@interface MASCompositeConstraint ()
@property (nonatomic, strong) id mas_key;
@property (nonatomic, strong) NSMutableArray *childConstraints;
@end
其中,childConstraints
属性持有了一组约束。
我们再来看一下 MASCompositeConstraint
实现的父类抽象方法。
首先,属性操作方法所调用的一个抽象方法。
- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
[self constraint:self addConstraintWithLayoutAttribute:layoutAttribute];
return self;
}
该方法调用了 MASCompositeConstraint
所实现的 MASConstraintDelegate
的一个方法。
- (MASConstraint *)constraint:(MASConstraint __unused *)constraint addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
id strongDelegate = self.delegate;
MASConstraint *newConstraint = [strongDelegate constraint:self addConstraintWithLayoutAttribute:layoutAttribute];
newConstraint.delegate = self;
[self.childConstraints addObject:newConstraint];
return newConstraint;
}
可以看出,该方法内部将通过其代理新创建的普通约束或组合约束添加至 MASCompositeConstraint
的 childConstraints
数组中,并设置子约束的代理为 MASCompositeConstraint
的代理。
事实上,在 Masonry 中,下文将要提到的 MASConstraintMaker
充当了所有约束的最终代理,如下图所示。MASCompositeConstraint
只是充当了转接和补充的作用。
至于关系操作方法、倍数操作方法、常量操作方法、优先级操作方法所调用的抽象方法。MASCompositeConstraint
对此的实现基本相同,都是对 childConstraints
中的约束进行遍历设置。
MASConstraintMaker
MASConstraintMaker
是 Masonry 的核心。
MASConstraintMaker
指定了构建布局的目标视图以及相关的约束。
@interface MASConstraintMaker ()
@property (nonatomic, weak) MAS_VIEW *view;
@property (nonatomic, strong) NSMutableArray *constraints;
@end
MASConstraintMaker
提供了一系列只读的 MASConstraint
属性。这些属性在其 getter
方法内创建了对应 NSLayoutAttribute
枚举类型的约束项。这些属性包括以下:
@property (nonatomic, strong, readonly) MASConstraint *left;
@property (nonatomic, strong, readonly) MASConstraint *top;
@property (nonatomic, strong, readonly) MASConstraint *right;
@property (nonatomic, strong, readonly) MASConstraint *bottom;
@property (nonatomic, strong, readonly) MASConstraint *leading;
@property (nonatomic, strong, readonly) MASConstraint *trailing;
@property (nonatomic, strong, readonly) MASConstraint *width;
@property (nonatomic, strong, readonly) MASConstraint *height;
@property (nonatomic, strong, readonly) MASConstraint *centerX;
@property (nonatomic, strong, readonly) MASConstraint *centerY;
@property (nonatomic, strong, readonly) MASConstraint *baseline;
@property (nonatomic, strong, readonly) MASConstraint *firstBaseline;
@property (nonatomic, strong, readonly) MASConstraint *lastBaseline;
@property (nonatomic, strong, readonly) MASConstraint *leftMargin;
@property (nonatomic, strong, readonly) MASConstraint *rightMargin;
@property (nonatomic, strong, readonly) MASConstraint *topMargin;
@property (nonatomic, strong, readonly) MASConstraint *bottomMargin;
@property (nonatomic, strong, readonly) MASConstraint *leadingMargin;
@property (nonatomic, strong, readonly) MASConstraint *trailingMargin;
@property (nonatomic, strong, readonly) MASConstraint *centerXWithinMargins;
@property (nonatomic, strong, readonly) MASConstraint *centerYWithinMargins;
@property (nonatomic, strong, readonly) MASConstraint *edges;
@property (nonatomic, strong, readonly) MASConstraint *size;
@property (nonatomic, strong, readonly) MASConstraint *center;
@property (nonatomic, strong, readonly) MASConstraint *(^attributes)(MASAttribute attrs);
上面提到,MASViewConstraint
和 MASCompositeConstraint
都会利用其代理来创建并添加约束项,而它们的代理都是 MASConstraintMaker
。那么,我们来看一下 MASConstraintMaker
对于 MASConstraintDelegate
的实现是怎么样的。
- (void)constraint:(MASConstraint *)constraint shouldBeReplacedWithConstraint:(MASConstraint *)replacementConstraint {
NSUInteger index = [self.constraints indexOfObject:constraint];
NSAssert(index != NSNotFound, @"Could not find constraint %@", constraint);
[self.constraints replaceObjectAtIndex:index withObject:replacementConstraint];
}
- (MASConstraint *)constraint:(MASConstraint *)constraint addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
// 根据 约束属性 和 视图 创建一个约束单元
MASViewAttribute *viewAttribute = [[MASViewAttribute alloc] initWithView:self.view layoutAttribute:layoutAttribute];
//创建约束,以约束单元作为约束的第一项
MASViewConstraint *newConstraint = [[MASViewConstraint alloc] initWithFirstViewAttribute:viewAttribute];
if ([constraint isKindOfClass:MASViewConstraint.class]) {
// 如果是在已有约束的基础上再创建的约束,则将它们转换成一个 组合约束,并将原约束替换成该组合约束。
NSArray *children = @[constraint, newConstraint];
MASCompositeConstraint *compositeConstraint = [[MASCompositeConstraint alloc] initWithChildren:children];
compositeConstraint.delegate = self;
[self constraint:constraint shouldBeReplacedWithConstraint:compositeConstraint];
return compositeConstraint;
}
if (!constraint) {
// 如果不是在已有约束的基础上再创建约束,则添加约束至列表
newConstraint.delegate = self;
[self.constraints addObject:newConstraint];
}
return newConstraint;
}
我们先看 constraint:shouldBeReplacedWithConstraint:
方法,该方法的职责非常简单,就是在已有的约束中查找某个约束并进行替换。
我们再看constraint:addConstraintWithLayoutAttribute:
方法,该方法是被调用较多的一个方法,其职责主要就是创建并添加约束至 constraints
列表属性中。
工作流程
在了解了 Masonry 的基本组成之后,我们再通过一个示例来介绍一下 Masonry 的工作流程。
示例如下所示。
[view mas_makeConstraints::^(MASConstraintMaker *make) {
make.top.equalTo(@10);
make.left.equalTo(superview.mas_left).offset(10);
make.width.height.equalTo(@100);
}];
首先执行分类方法 mas_makeConstraints:
。
- (NSArray *)mas_makeConstraints:(void(^)(MASConstraintMaker *))block {
self.translatesAutoresizingMaskIntoConstraints = NO;
MASConstraintMaker *constraintMaker = [[MASConstraintMaker alloc] initWithView:self];
block(constraintMaker);
return [constraintMaker install];
}
方法内部先设置 translatesAutoresizingMaskIntoConstraints
为 NO
。因为,Autoresize Mask 和 Auto Layout 是两套布局系统,前者默认可以转换成后者。为了避免前者对自动布局系统产生干扰,这里需要关闭布局转换。
方法内部还会创建一个 MASConstraintMaker
实例,然后以此为参数调用 block 执行。
constraintMaker
创建完约束后,在调用 install
方法将约束添加至正确的约束层级位置。install
方法的内部实现如下:
- (NSArray *)install {
// 只有在 mas_remakeConstraints 时,removeExisting 才为 YES
if (self.removeExisting) {
// 此时,需要先删除所有的约束
NSArray *installedConstraints = [MASViewConstraint installedConstraintsForView:self.view];
for (MASConstraint *constraint in installedConstraints) {
[constraint uninstall];
}
}
// 添加约束
NSArray *constraints = self.constraints.copy;
for (MASConstraint *constraint in constraints) {
// 设置约束的 updateExisting 属性
// 只有在 mas_updateConstraints 时,updateExisting 才为 YES
constraint.updateExisting = self.updateExisting;
[constraint install];
}
// 清空 constraints 数组缓存
[self.constraints removeAllObjects];
return constraints;
}
install
方法内部会对 constraints
列表中的所有约束依次执行各自的 install
方法来添加约束。我们来看一下约束的 install
方法
// MASCompositeConstraint
- (void)install {
for (MASConstraint *constraint in self.childConstraints) {
constraint.updateExisting = self.updateExisting;
[constraint install];
}
}
// MASViewConstraint
- (void)install {
// 约束是否已被添加
if (self.hasBeenInstalled) {
return;
}
// 如果约束支持 isActive 方法,且 self.layoutConstraint 有值了
if ([self supportsActiveProperty] && self.layoutConstraint) {
self.layoutConstraint.active = YES;
[self.firstViewAttribute.view.mas_installedConstraints addObject:self];
return;
}
MAS_VIEW *firstLayoutItem = self.firstViewAttribute.item;
NSLayoutAttribute firstLayoutAttribute = self.firstViewAttribute.layoutAttribute;
MAS_VIEW *secondLayoutItem = self.secondViewAttribute.item;
NSLayoutAttribute secondLayoutAttribute = self.secondViewAttribute.layoutAttribute;
// alignment attributes must have a secondViewAttribute
// therefore we assume that is refering to superview
// eg make.left.equalTo(@10)
if (!self.firstViewAttribute.isSizeAttribute && !self.secondViewAttribute) {
secondLayoutItem = self.firstViewAttribute.view.superview;
secondLayoutAttribute = firstLayoutAttribute;
}
// 生成一个 NSLayoutConstraint
MASLayoutConstraint *layoutConstraint
= [MASLayoutConstraint constraintWithItem:firstLayoutItem
attribute:firstLayoutAttribute
relatedBy:self.layoutRelation
toItem:secondLayoutItem
attribute:secondLayoutAttribute
multiplier:self.layoutMultiplier
constant:self.layoutConstant];
layoutConstraint.priority = self.layoutPriority;
layoutConstraint.mas_key = self.mas_key;
// 确定约束layoutConstraint 的约束层级(即要被添加到的位置)
if (self.secondViewAttribute.view) {
MAS_VIEW *closestCommonSuperview = [self.firstViewAttribute.view mas_closestCommonSuperview:self.secondViewAttribute.view];
NSAssert(closestCommonSuperview,
@"couldn't find a common superview for %@ and %@",
self.firstViewAttribute.view, self.secondViewAttribute.view);
self.installedView = closestCommonSuperview;
} else if (self.firstViewAttribute.isSizeAttribute) {
self.installedView = self.firstViewAttribute.view;
} else {
self.installedView = self.firstViewAttribute.view.superview;
}
MASLayoutConstraint *existingConstraint = nil;
if (self.updateExisting) {
existingConstraint = [self layoutConstraintSimilarTo:layoutConstraint];
}
if (existingConstraint) {
// just update the constant
// 约束存在,则更新constant值
existingConstraint.constant = layoutConstraint.constant;
self.layoutConstraint = existingConstraint;
} else {
// 约束不存在,则在该位置添加约束
[self.installedView addConstraint:layoutConstraint];
self.layoutConstraint = layoutConstraint;
[firstLayoutItem.mas_installedConstraints addObject:self];
}
}
无论是 MASCompositeConstraint
还是 MASViewConstraint
,本质上还是调用 MASViewConstraint
的 install
方法。该方法根据 MASViewConstraint
的各个属性创建一个原生的约束(NSLayoutConstraint
类型),并在定位约束层级后,将约束添加到相应层级的视图上。
下面,我们再来看看执行 block 又发生了什么。
首先,看一下 make.top.equalTo(@10);
的执行流程。
// MASConstraintMaker
- (MASConstraint *)top {
return [self addConstraintWithLayoutAttribute:NSLayoutAttributeTop];
}
- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
return [self constraint:nil addConstraintWithLayoutAttribute:layoutAttribute];
}
- (MASConstraint *)constraint:(MASConstraint *)constraint addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
// 根据 约束属性 和 视图 创建一个约束单元
MASViewAttribute *viewAttribute = [[MASViewAttribute alloc] initWithView:self.view layoutAttribute:layoutAttribute];
//创建约束,以约束单元作为约束的第一项
MASViewConstraint *newConstraint = [[MASViewConstraint alloc] initWithFirstViewAttribute:viewAttribute];
if ([constraint isKindOfClass:MASViewConstraint.class]) {
// ...
}
if (!constraint) {
// 如果不是在已有约束的基础上再创建约束,则添加约束至列表
newConstraint.delegate = self; // 注意这一步,会对 make.top.left 这种情形产生关键影响,详见下文
[self.constraints addObject:newConstraint];
}
return newConstraint;
}
// -----------------------------------------------------------------
// 至此,make.top 执行完毕
// -----------------------------------------------------------------
// MASConstraint
- (MASConstraint * (^)(id))equalTo {
return ^id(id attribute) {
// attribute 可能是 @0 类似的值,也可能是 view.mas_width等这样的
return self.equalToWithRelation(attribute, NSLayoutRelationEqual);
};
}
// MASViewConstraint
- (MASConstraint * (^)(id, NSLayoutRelation))equalToWithRelation {
return ^id(id attribute, NSLayoutRelation relation) {
if ([attribute isKindOfClass:NSArray.class]) {
// ...
} else {
NSAssert(!self.hasLayoutRelation || self.layoutRelation == relation && [attribute isKindOfClass:NSValue.class], @"Redefinition of constraint relation");
self.layoutRelation = relation;
self.secondViewAttribute = attribute; // 设置约束第二项
return self;
}
};
}
- (void)setSecondViewAttribute:(id)secondViewAttribute {
if ([secondViewAttribute isKindOfClass:NSValue.class]) {
[self setLayoutConstantWithValue:secondViewAttribute];
} else if ([secondViewAttribute isKindOfClass:MAS_VIEW.class]) {
// _secondViewAttribute = [[MASViewAttribute alloc] initWithView:secondViewAttribute layoutAttribute:self.firstViewAttribute.layoutAttribute];
} else if ([secondViewAttribute isKindOfClass:MASViewAttribute.class]) {
// _secondViewAttribute = secondViewAttribute;
} else {
// NSAssert(NO, @"attempting to add unsupported attribute: %@", secondViewAttribute);
}
}
// MASConstraint
- (void)setLayoutConstantWithValue:(NSValue *)value {
if ([value isKindOfClass:NSNumber.class]) {
self.offset = [(NSNumber *)value doubleValue];
} else if (strcmp(value.objCType, @encode(CGPoint)) == 0) {
// CGPoint point;
// [value getValue:&point];
// self.centerOffset = point;
} else if (strcmp(value.objCType, @encode(CGSize)) == 0) {
// CGSize size;
// [value getValue:&size];
// self.sizeOffset = size;
} else if (strcmp(value.objCType, @encode(MASEdgeInsets)) == 0) {
// MASEdgeInsets insets;
// [value getValue:&insets];
// self.insets = insets;
} else {
// NSAssert(NO, @"attempting to set layout constant with unsupported value: %@", value);
}
}
// MASViewConstraint
- (void)setOffset:(CGFloat)offset {
self.layoutConstant = offset; // 设置约束常量
}
// -----------------------------------------------------------------
// 至此,make.top.equalTo(@10) 执行完毕
// -----------------------------------------------------------------
然后,我们再看 make.left.equalTo(superview.mas_left).offset(10);
的执行流程。
其实,这个执行流程也就是执行 equalTo
内部的 setSecondViewAttribute
时有所不同。另外,offset
方法做了一步额外的操作。
// MASViewConstraint
- (void)setSecondViewAttribute:(id)secondViewAttribute {
if ([secondViewAttribute isKindOfClass:NSValue.class]) {
// [self setLayoutConstantWithValue:secondViewAttribute];
} else if ([secondViewAttribute isKindOfClass:MAS_VIEW.class]) {
// _secondViewAttribute = [[MASViewAttribute alloc] initWithView:secondViewAttribute layoutAttribute:self.firstViewAttribute.layoutAttribute];
} else if ([secondViewAttribute isKindOfClass:MASViewAttribute.class]) {
_secondViewAttribute = secondViewAttribute;
} else {
// NSAssert(NO, @"attempting to add unsupported attribute: %@", secondViewAttribute);
}
}
// -----------------------------------------------------------------
// 至此,make.left.equalTo(superview.mas_left) 执行完毕
// -----------------------------------------------------------------
// MASConstraint
- (MASConstraint * (^)(CGFloat))offset {
return ^id(CGFloat offset){
self.offset = offset;
return self;
};
}
- (void)setOffset:(CGFloat)offset {
self.layoutConstant = offset;
}
// -----------------------------------------------------------------
// 至此,make.left.equalTo(superview.mas_left).offset(10) 执行完毕
// -----------------------------------------------------------------
最后,我们再看 make.width.height.equalTo(@100);
的执行流程。
其实到 make.width
这一步与前面没有什么差别,再执行 height
时出现了转换。
// MASConstraint
- (MASConstraint *)height {
return [self addConstraintWithLayoutAttribute:NSLayoutAttributeHeight];
}
// MASViewConstraint
- (MASConstraint *)addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
NSAssert(!self.hasLayoutRelation, @"Attributes should be chained before defining the constraint relation");
// 见上述 make.top.equalTo(@10) 分析代码中的介绍,此时 self.delegate 早已被设置成了 NSConstraintMaker 了
return [self.delegate constraint:self addConstraintWithLayoutAttribute:layoutAttribute];
}
// MASConstraintMaker
- (MASConstraint *)constraint:(MASConstraint *)constraint addConstraintWithLayoutAttribute:(NSLayoutAttribute)layoutAttribute {
// 根据 约束属性 和 视图 创建一个约束单元
MASViewAttribute *viewAttribute = [[MASViewAttribute alloc] initWithView:self.view layoutAttribute:layoutAttribute];
// 创建约束,以约束单元作为约束的第一项
MASViewConstraint *newConstraint = [[MASViewConstraint alloc] initWithFirstViewAttribute:viewAttribute];
if ([constraint isKindOfClass:MASViewConstraint.class]) {
// 如果是在已有约束的基础上再创建的约束,则将它们转换成一个 组合约束,并将原约束替换成该组合约束。
NSArray *children = @[constraint, newConstraint];
MASCompositeConstraint *compositeConstraint = [[MASCompositeConstraint alloc] initWithChildren:children];
compositeConstraint.delegate = self;
// 这里会将原来 make.width 添加的约束 替换成一个 组合约束(宽度约束 + 高度约束)
[self constraint:constraint shouldBeReplacedWithConstraint:compositeConstraint];
// 返回组合约束
return compositeConstraint;
}
if (!constraint) {
// ...
}
// ...
}
- (void)constraint:(MASConstraint *)constraint shouldBeReplacedWithConstraint:(MASConstraint *)replacementConstraint {
NSUInteger index = [self.constraints indexOfObject:constraint];
NSAssert(index != NSNotFound, @"Could not find constraint %@", constraint);
[self.constraints replaceObjectAtIndex:index withObject:replacementConstraint];
}
// -----------------------------------------------------------------
// 至此,make.width.height 执行完毕
// -----------------------------------------------------------------
// MASConstraint
- (MASConstraint * (^)(id))equalTo {
return ^id(id attribute) {
// attribute 可能是 @0 类似的值,也可能是 view.mas_width等这样的
return self.equalToWithRelation(attribute, NSLayoutRelationEqual);
};
}
// MASCompositeConstraint
- (MASConstraint * (^)(id, NSLayoutRelation))equalToWithRelation {
return ^id(id attr, NSLayoutRelation relation) {
// CompositeConstraint 的 childConstraits 中每一项,调用 equalToWithRelation
for (MASConstraint *constraint in self.childConstraints.copy) {
constraint.equalToWithRelation(attr, relation);
}
return self;
};
}
// -----------------------------------------------------------------
// 至此,make.width.height.equalTo(@100) 执行完毕
// -----------------------------------------------------------------
总结
Masonry 巧妙利用了面向对象的继承、多态思想以及 block 的特性,从而实现了非常简便的链式 DSL,极大地提升了自动布局开发的效率。
参考
- Masonry
(完)