在学习二叉树之前.必须先要掌握一些树的重要概念:
以下树的概念只需了解:
二叉树:
一颗二叉树是结点的一个有限集合.二叉树不存在度大于2的结点,并且二叉树的子树有左右之分,且次序不能颠倒,因此二叉树是有序树.
两种特殊的二叉树:
满二叉树:
二叉树的性质:
1.若规定根结点的层数为1,则一颗非空二叉树的的i层上最多有2^(i-1)个结点.(i>0)
//用一个内部类定义二叉树中的结点
//这用的是孩子表示法
static class TreeNode {
public char val;
public TreeNode left;//存储左孩子的引用
public TreeNode right;//存储右孩子的引用
public TreeNode(char val) {
this.val = val;
}
}
public TreeNode createTree() {
TreeNode A = new TreeNode('A');
TreeNode B = new TreeNode('B');
TreeNode C = new TreeNode('C');
TreeNode D = new TreeNode('D');
TreeNode E = new TreeNode('E');
TreeNode F = new TreeNode('F');
TreeNode G = new TreeNode('G');
TreeNode H = new TreeNode('H');
A.left = B;
A.right = C;
B.left = D;
B.right = E;
C.left = F;
C.right = G;
E.right = H;
return A;
}
二叉树的遍历:遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题.
前序遍历: 根节点->根的左子树->根的右子树
中序遍历:根的左子树->根结点->根的右子树
后序遍历:根的左子树->根的右子树->根结点
注意:
1.如果只给一个遍历,能不能创建一颗二叉树?
不能,因为有可能存在两颗不同的树,某一个遍历是一样的.
2.如果只给前序和后序遍历,能不能创建一颗二叉树?
不能,前序或者后序都是确定根的位置,无法确定左树和右树的位置,至少提供一个中序遍历+前序或者后序.
代码实现:(递归实现)
前序遍历:
public void preOrder(TreeNode root) {
if (root == null) {
return;
}
System.out.print(root.val + " ");
preOrder(root.left);
preOrder(root.right);
}
中序遍历:
public void inOrder(TreeNode root) {
if (root == null) {
return;
}
inOrder(root.left);
System.out.print(root.val + " ");
inOrder(root.right);
}
后续遍历:
public void postOrder(TreeNode root) {
if (root == null) {
return;
}
postOrder(root.left);
postOrder(root.right);
System.out.print(root.val + " ");
}
关于遍历的oj题:
注意:与我们上面写的前序代码不同的是,这道题目中要求我们把结果放到List当中并返回.
解法1:
List list =new ArrayList<>();
public List preorderTraversal(TreeNode root) {
if(root==null){
return list;
}
list.add(root.val);
preorderTraversal(root.left);
preorderTraversal(root.right);
return list;
}
解法2:我们可以巧妙运用函数的返回值.
public List preorderTraversal(TreeNode root) {
List ret =new ArrayList<>();
if(root==null){
return ret;
}
ret.add(root.val);
List leftTree = preorderTraversal(root.left);
ret.addAll(leftTree);
List rightTree = preorderTraversal(root.right);
ret.addAll(rightTree);
return ret;
}
获取二叉树的结点个数:
两种思路:
遍历:
public static int nodeSize = 0;
public static int size(TreeNode root) {
if (root == null) {
return 0;
}
nodeSize++;
size(root.left);
size(root.right);
return nodeSize;
}
子问题:
public int size2(TreeNode root) {
if (root == null) {
return 0;
}
int tmp = size2(root.left) + size2(root.right) + 1;
return tmp;
}
int getLeafNodeCount(TreeNode root) {
if (root == null) {
return 0;
}
if (root.right == null && root.left == null) {
return 1;
}
int tmp = getLeafNodeCount(root.left) + getLeafNodeCount(root.right);
return tmp;
}
遍历的思想:
public static int leafSize = 0;
void getLeafNodeCount2(TreeNode root) {
if (root == null) {
return;
}
if (root.left == null && root.right == null) {
leafSize++;
}
getLeafNodeCount2(root.left);
getLeafNodeCount2(root.right);
}
int getKLevelNodeCount(TreeNode root, int k){
if(root == null || k <= 0){
return 0;
}
if(k==1){
return 1;
}
int tmp = getKLevelNodeCount(root.left,k-1)+
getKLevelNodeCount(root.right,k-1);
return tmp;
}
获取二叉树的高度:
树的高度=左子树和右子树的最大值+1;
public int getHeight(TreeNode root) {
if (root == null) {
return 0;
}
int leftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
1.判断根节点 2.判断root.left 3.判断root.right 4.不存在你要找的节点
public TreeNode find(TreeNode root, char val) {
if (root == null) {
return null;
}
if (root.val == val) {
return root;
}
TreeNode ret1 = find(root.left, val);
if (ret1 != null) {
return ret1;
}
TreeNode ret2 = find(root.right, val);
if (ret2 != null) {
return ret2;
}
return null;
}
层序遍历:
非递归层序遍历,利用队列这种数据结构.
public void levelOrder(TreeNode root) {
if (root == null) {
return;
}
Queue qu = new LinkedList<>();
qu.offer(root);
while (!qu.isEmpty()) {
TreeNode cur = qu.poll();
System.out.print(cur.val + " ");
if (cur.left != null) {
qu.offer(cur.left);
}
if (cur.right != null) {
qu.offer(cur.right);
}
}
}
判断一棵树是不是完全二叉树:
public boolean isCompleteTree(TreeNode root){
if (root == null){
return true;
}
Queue qu = new LinkedList<>();
qu.offer(root);
while(!qu.isEmpty()){
TreeNode cur = qu.poll();
if (cur != null){
qu.offer(cur.left);
qu.offer(cur.right);
}else {
break;
}
}
//判断队列剩下的值是不是有 非null的存在
while (!qu.isEmpty()){
TreeNode pop = qu.poll();
if (pop != null){
return false;
}
}
return true;
}
oj题:
题1:相同的树
首先相同,既要满足结构上相同又要满足数值上相同.
思路解析:
首先判断一个为空一个不为空的情况,如果满足条件直接返回false,不满足就剩下两种情况,
一种是两个都为空的情况,一种是两个都不为空的情况.
如果都为空,直接返回true.
都不为空就判断结点的数值是否相等.不相等直接返回false,如果相等就在去递归判断p的左树和q的左树+p的右树和q的右树.
此题的时间复杂度: p:M q:N O(min(M,N))
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p==null&&q!=null ||p!=null&&q==null ){
return false;
}
if(p==null && q == null){
return true;
}
if(p.val!=q.val){
return false;
}
return (isSameTree(p.left,q.left)&&isSameTree(p.right,q.right));
}
}
题2:另一颗树的子树
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p==null&&q!=null ||p!=null&&q==null ){
return false;
}
if(p==null && q == null){
return true;
}
if(p.val!=q.val){
return false;
}
return (isSameTree(p.left,q.left)&&isSameTree(p.right,q.right));
}
public boolean isSubtree(TreeNode root, TreeNode subRoot) {
if(root == null){
return false;
}
//1.判断root和subRoot是不是两颗相同的树
if(isSameTree(root,subRoot)){
return true;
}
//2.判断subRoot是不是root.left的子树
if(isSubtree(root.left,subRoot)){
return true;
}
//3.判断subRoot是不是root.right的子树
if(isSubtree(root.right,subRoot)){
return true;
}
return false;
}
}
题3:翻转二叉树
思路:要翻转整棵树,实际上是翻转整棵树的左树和右树
1.翻转root.left和root.right
2.处理root.left的子树
3.处理root.right的子树
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root == null){
return null;
}
TreeNode tmp =root.left;
tmp = root.left;
root.left = root.right;
root.right = tmp;
invertTree(root.left);
invertTree(root.right);
return root;
}
}
题4:平衡二叉树
要判断整棵树是高度平衡的二叉树,那么必须满足每棵子树都是平衡的二叉树.
思路:先求当前root结点是不是平衡的,在判断左树是不是平衡的,再去判断右树是不是平衡的.
class Solution {
public int maxDepth(TreeNode root){
if(root == null){
return 0;
}
int leftHeight = maxDepth(root.left);
int rightHeight = maxDepth(root.right);
return leftHeight > rightHeight ? leftHeight+1 : rightHeight+1;
}
public boolean isBalanced(TreeNode root) {
if(root == null){
return true;
}
int leftH = maxDepth(root.left);
int rightH = maxDepth(root.right);
return Math.abs(leftH-rightH) < 2 &&
isBalanced(root.left) &&
isBalanced(root.right);
}
}
当前代码的时间复杂度达到了:O(N^2),最坏的情况下每个结点都要求高度.
如果要让时间复杂度控制在O(N),如何操作??
在上述代码当中,再求根节点的高度时,根据高度的代码,其实它的子树的高度都被计算了一遍,这就说明,高度被重复计算了,况且,在求根节点的高度时,我们其实已经知道当前树的子树是不是平衡二叉树了.
class Solution {
public int maxDepth(TreeNode root){
if(root == null){
return 0;
}
int leftH = maxDepth(root.left);
int rightH = maxDepth(root.right);
if(leftH>=0 && rightH>=0 && Math.abs(leftH-rightH)<=1){
return Math.max(leftH,rightH)+1;
}else{
return -1;
}
}
public boolean isBalanced(TreeNode root) {
if(root == null){
return true;
}
return maxDepth(root)>=0;
}
}
上述代码在求根节点高度的过程中就实现了对其子树是否是平衡二叉树的判断,整个过程只需要对整棵树遍历一次.时间复杂度达到了O(N).
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root == null) return true;
return isSymmetricChild(root.left,root.right);
}
private boolean isSymmetricChild(TreeNode leftTree,TreeNode rightTree){
if((leftTree == null && rightTree != null) || (leftTree != null && rightTree == null)){
return false;
}
if(leftTree==null && rightTree== null){
return true;
}
if(leftTree.val != rightTree.val){
return false;
}
return isSymmetricChild(leftTree.left,rightTree.right) &&
isSymmetricChild(leftTree.right,rightTree.left);
}
}
题6:二叉树的分层遍历
class Solution {
public List> levelOrder(TreeNode root) {
List> list = new ArrayList();
if(root == null){
return list;
}
Queue qu = new LinkedList();
qu.offer(root);
while(!qu.isEmpty()){
int size = qu.size();
List list2 =new ArrayList();
while(size > 0){
TreeNode cur = qu.poll();
list2.add(cur.val);
size--;
if(cur.left != null){
qu.offer(cur.left);
}
if(cur.right != null){
qu.offer(cur.right);
}
}
list.add(list2);
}
return list;
}
}
题7:二叉树遍历
import java.util.Scanner;
class TreeNode {
public char val;
public TreeNode left;//存储左孩子的引用
public TreeNode right;//存储右孩子的引用
public TreeNode(char val) {
this.val = val;
}
}
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
// 注意 hasNext 和 hasNextLine 的区别
while (in.hasNextLine()) { // 注意 while 处理多个 case
String str = in.nextLine();
TreeNode root = createTree(str);
inorder(root);
}
}
private static void inorder(TreeNode root){
if(root == null){
return;
}
inorder(root.left);
System.out.print(root.val+" ");
inorder(root.right);
}
public static int i =0;
private static TreeNode createTree(String str){
TreeNode root = null;
if(str.charAt(i)!='#'){
root = new TreeNode(str.charAt(i));
i++;
root.left = createTree(str);
root.right = createTree(str);
}else{
i++;
}
return root;
}
}