- 代码随想录算法训练营day28(0121)
Lazy.land
算法
1.买卖股票的最佳时机II想到思路其实代码非常简单,其实也跟之前做的那一题摆动序列有一点关联,只不过更加地简单这题的代码,思路很巧妙!题目122.买卖股票的最佳时机II给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的最大利润。示例1:输入:pr
- solidworks的三维特征内容介绍
小白是昏头仔
3d
草图与尺寸相关尺寸预览与编辑:选择一个或多个实体后,可使用新选项预览和编辑尺寸,加快草图绘制速度,让设计师能更直观地调整尺寸以满足设计需求。异型孔向导增强:“异型孔向导”工具提供新选项来选择自动打孔的几何体的端点位置。还可使用几何草图实体(如直线、方形、槽口和样条曲线)作为打孔定位的引导,将鼠标悬停在实体上,单击即可在这些草图实体上定位孔,提高打孔操作的效率和准确性。显示自定义属性单位:在注释和表
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 蓝桥杯训练—完美的代价
初春十九
蓝桥杯训练蓝桥杯职场和发展
文章目录一、题目二、示例三、解析四、代码一、题目回文串,是一种特殊的字符串,它从左往右读和从右往左读是一样的。现在给你一个串,它不一定是回文的,请你计算最少的交换次数使得该串变成一个完美的回文串。交换的定义是:交换两个相邻的字符例如mamad第一次交换ad:mamda第二次交换md:madma第三次交换ma:madam输入格式:输入一行,是一个字符串,长度为n,只包括小写字母输出格式:如果可能,输
- 基于C++和ONNX Runtime的YOLOv5目标检测实战
浪浪山小白兔
c++YOLO目标检测
1.前言在计算机视觉领域,目标检测是一项关键任务,其应用广泛,涵盖了安防监控、自动驾驶、工业检测等众多领域。YOLOv5作为一种先进的目标检测算法,以其速度快、精度高的特点备受关注。本文将详细介绍如何使用C++结合ONNXRuntime推理引擎来部署YOLOv5模型,实现高效的目标检测。2.ONNX与YOLOv52.1ONNX简介ONNX(OpenNeuralNetworkExchange)是一种
- 深入Vue 3:从入门到精通
养军博客
vue.js前端javascript
深入Vue3:从入门到精通文章目录深入Vue3:从入门到精通一、Vue3的核心优势1.更快的性能:采用新的渲染器和优化策略,提高了渲染速度和内存效率。2.更轻量的体积:核心库更小,减少了加载时间,提高了网页性能。3.更灵活的CompositionAPI:使用函数式编程思想,可以更轻松地组织和复用代码。4.更强大的TypeScript支持:提供了更好的类型推断和代码提示,提高了开发效率和代码质量。5
- 1. 基于大模型能力,如何提炼出优质prompt(入门版)
姚瑞南
prompt系列课程人工智能AIGCchatgpt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)本文简介:入门版:基于大模型能力,如何提炼出优质prompt提示词的重要性和价值大模型基础能力简介prompt的基本定义如何定义优质的promptprompt的万能公式与套路prom
- Redis
秋枫博客
redisredis
redisRedis是什么是一个高性能的key-value形式的数据库常常被用于缓存Redis有什么优势内存数据库,速度快,也支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。Redis读的速度是110000次/s,写的速度是81000次/s,且是单台服务器的Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据
- 论文阅读--Qwen2&2.5技术报告
__如果
论文阅读qwen
Qwen21引言所有模型都是在超过7trilliontoken(7万亿)的高质量、大规模数据集上预训练的2Tokenizer&Model2.1Tokenizer沿用Qwen(Bai等人,2023a)的做法,我们采用了基于字节级字节对编码的相同Tokenizer所有大小的模型都采用一个共有词汇表,包含151,643个常规词元和3个控制词元2.2模型架构基于Transformer架构的大型语言模型,具
- 蓝桥杯day5刷题日记-分巧克力-天干地支-求和
_yukinoshita_yukino
蓝桥杯蓝桥杯算法数据结构刷题笔记
P8647[蓝桥杯2017省AB]分巧克力思路:二分查找#includeusingnamespacestd;intn,k;inth[100010],w[100010];boolcheck(intx){intsum=0;for(inti=0;i=k)returntrue;}returnfalse;}intmain(){cin>>n>>k;for(inti=0;i>h[i]>>w[i];}intl=1
- 几个导致DeepFaceLab训练速度较慢的原因
AlphaFinance
多媒体AI技术人工智能python机器学习
可能有几个原因导致DeepFaceLab训练速度较慢:复杂度:DeepFaceLab的算法和模型较为复杂,需要处理大量数据和计算复杂的数学运算,这可能导致训练速度较慢。硬件配置:DeepFaceLab需要较高的计算机配置才能运行,包括较大的内存、高性能的GPU、快速的存储器等。如果你的计算机配置不够高,可能会导致训练速度较慢。数据量:DeepFaceLab需要大量的训练数据来训练模型,如果你的数据
- R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
生信学习者1
R语言机器学习实战r语言机器学习算法数据分析数据挖掘数据可视化人工智能
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤下载数据加载R包导入数据数据预处理数据分割MCFS运行MCFS-ID过程混淆矩阵重要特征的RI最小阈值距离与共同部分收敛特征重要性排序选择重要特征构建特征依赖图提取重要特征基于重要特征构建随机森林模型混淆矩阵评估模型AUC曲线刻画模型在训练和测试数据集的表现总结系统信息介绍特征选择(FeatureSel
- drissionpage爬虫自动化入门案例与视频教程与相关代码
十一姐
爬虫自动化drissionpage
目录零、各种关于drissionpage文章视频案例解决方案合集一、dp安装与首次打开网页测试使用二、dp获取网页内容html/text/attr入门三、dp输入点击input/click/eles元素交互等入门四、dp获取cookies信息入门五、dp实现翻页并下载图片入门六、dp实现网页接口数据包监听入门(类似network和fiddler)七、dp实现高并发10倍速度爬取详情页信息八、dp实
- 昇腾910-PyTorch 实现 GoogleNet图像分类
深度学习图像识别
PyTorch实现GoogleNet用于图像分类本实验主要介绍了如何在昇腾上,使用pytorch对经典的GoogleNet模型在公开的CIFAR10数据集进行分类训练的实战讲解。内容包括GoogleNet模型创新点介绍、GoogleNet网络架构剖析与GoogleNet网络模型代码实战分析等等。本实验的目录结构安排如下所示:GoogleNet网络模型创新点介绍GoogleNet的网络架构剖析Goo
- Android入门第69天-AndroidStudio中的Gradle使用国内镜像最强教程
TGITCIC
Android从入门到精通androidandroid国内镜像androidgradleandroid镜像android编译超时gradle超时gradle下载慢
背景AndroidStudio默认连接的是dl.google的gadle仓库。每次重新build时:下载速度慢;等待了半天总时buildfaild;build到一半connectiontimeout;即使使用了魔法也难以一次build好;这严重影响了我们的学习、开发效率。当前网络上的使用国内镜像的教程不全网上的教程要么有的只说一半、有的干脆说了就不对、有的只给出之言片语。老实说,目前网上的Andr
- 零门槛一键生成PPT,利用人工智能快速提高办公效率(无需第三方插件)
beautycountry88
powerpoint人工智能
人工智能技术的发展正以惊人的速度改变着我们的世界,今天给大家介绍下利用ChatGPT快速生成PPT的方法,它能够帮助你一键生成PPT内容和漂亮的PPT文档,无需繁琐的设计和排版,只需要与ChatGPT交流,你就能轻松拥有一份令人赞叹的演示文稿。什么是ChatGPT?它是基于人工智能技术的语言模型,能够理解和生成自然语言。与传统的PPT制作方式不同,ChatGPT通过与你进行对话,理解你的需求和要点
- PID 控制算法(四):动态调整 PID 参数
为也科技
算法人工智能c语言
在一些复杂的控制系统中,PID控制器可能会因为参数不当,导致震荡(Oscillation)或过冲(Overshoot),这会影响系统的稳定性和响应速度。在这种情况下,动态调整PID参数是一个有效的方案。为什么需要动态调整PID参数?在传统的PID控制器中,比例(Kp)、积分(Ki)和微分(Kd)系数通常是静态设定的。然而,这些系数在某些情况下可能不适应系统的变化,特别是当系统工作在不同的操作点或者
- 人工智能与量子计算:未来编程的碰撞与共鸣
大梦百万秋
知识学爆量子计算
引言:编程的“摩尔定律”快到尽头了?曾几何时,摩尔定律曾预言着计算能力的飞速发展——每两年,晶体管的数量翻倍,处理器的速度也在跟着疯狂增长。这个定律引领了数十年的技术革命,推动了今天的智能手机、超级计算机和现代互联网的诞生。然而,摩尔定律的黄金时代正逐渐走向尾声。传统的硅基芯片工艺遇到了物理极限,无法再轻易实现持续的性能翻倍。此时,新的计算范式开始崭露头角——量子计算与人工智能(AI)的结合,正在
- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- 小土堆学习笔记10(利用GPU训练于模型验证)
干啥都是小小白
pytorch学习——小土堆学习笔记深度学习
1.利用GPU训练GPU可优化操作如下操作方法1方法2数据获取判断是否可以使用GPU,如果可以直接model.cuda()先设定device,用的时候直接model.to(“device”)损失函数1.1利用以前实战模型训练(经过完整测试最高到70%左右的正确率)实战模型如下:小土堆学习笔记5(sequential与小实战)-CSDN博客具体代码如下:classmymodel(Module):de
- 【大模型应用开发 动手做AI Agent】AutoGen
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【大模型应用开发动手做AIAgent】AutoGen关键词:自动生成(AutoGeneration)AI代理(Agent)大型语言模型AutoGen框架自定义任务生成1.背景介绍1.1问题的由来在当今的AI领域,大型语言模型因其强大的文本生成能力而受到广泛关注。这些模型通常在大规模文本数据集上进行预训练,以便能够生成与上下文相关的高质量文本。然而,对于特定领域或特定任务的需求,往往需要对这些通用模
- 【强化学习】Unity ML-Agents框架
大雨淅淅
人工智能unity游戏引擎机器学习人工智能深度学习学习
目录一、UnityML-Agents简介二、安装与配置三、基础使用四、关键技术点五、进阶技巧与案例分析六、学习资源七、常见问题与解决方案八、实战项目与案例研究九、未来展望与发展趋势十、结语一、UnityML-Agents简介UnityML-Agents是一个由UnityTechnologies开发的开源项目,它允许开发者利用机器学习技术来训练虚拟环境中的智能代理(Agent)。无论是希望创建更逼真
- python3.6 split用法_对sklearn的使用之数据集的拆分与训练详解(python3.6)
weixin_39849054
python3.6split用法
研修课上讲了两个例子,融合一下。主要演示大致的过程:导入->拆分->训练->模型报告以及几个重要问题:①标签二值化②网格搜索法调参③k折交叉验证④增加噪声特征(之前涉及)fromsklearnimportdatasets#从cross_validation导入会出现warning,说已弃用fromsklearn.model_selectionimporttrain-test_splitfromsk
- 论文笔记 U-Net: Convolutional Networks for Biomedical Image Segmentation
城南皮卡丘
#深度学习caffe人工智能
摘要:人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于大量使用数据增强来更有效地使用可用的注释样本。该体系结构包括用于捕获上下文的收缩路径和用于实现精确定位的对称扩展路径。我们表明,这样的网络可以从很少的图像进行端到端训练,并且在ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络),用于分割电子显微堆栈中的神经元结构。使用在透射光显微
- 如何优化数据库查询性能?请列举一些常见的优化方法。
破碎的天堂鸟
学习教程数据库oracle
优化数据库查询性能是提升系统效率和用户体验的重要手段。以下是一些常见的优化方法,结合了多篇证据中的内容:1.使用索引索引是提高查询速度的核心工具,应根据查询字段和表大小合理创建索引。例如,为主键、常用查询字段(如WHERE子句中的字段)创建索引可以显著提升查询效率。避免过度索引,因为过多的索引会增加写操作的成本和存储空间。定期重建和优化索引,以应对数据变化。2.优化查询语句避免全表扫描:通过合理使
- 第十九周:SSD(Single Shot MultiBox Detector)
L-含光承影
目标跟踪人工智能计算机视觉
SSD(SingleShotMultiBoxDetector)摘要Abstract1引言2SSD框架2.1设计理念2.2训练2.3预测3创新与不足总结参考摘要本篇博客介绍了SSD(SingleShotMultiBoxDetector),这是一种基于全卷积网络的单阶段目标检测模型。与双阶段检测模型(如FasterR-CNN)相比,SSD在保持较高检测精度的同时,显著提升了检测速度,使其更适用于实时检
- Swift语言的多线程编程
Code侠客行
包罗万象golang开发语言后端
Swift语言的多线程编程在现代软件开发中,多线程编程是提高应用性能和响应速度的重要手段。尤其是在iOS和macOS开发中,由于用户界面(UI)的交互性和复杂性,合理利用多线程可以极大地提升用户体验。本文将深入探讨Swift语言中的多线程编程机制,包括GCD(GrandCentralDispatch)、NSOperation、线程的基本概念及其使用场景。一、什么是多线程多线程是一种程序设计理念,通
- 一文洞悉AI技术架构:大模型、智能体与应用场景
大模型玩家
人工智能架构数据库深度学习pytorchtransformerai
人工智能(AI)的发展,正以前所未有的速度重塑我们的世界。从能与人对话的大语言模型到自动驾驶、精准医疗,AI的背后究竟隐藏着怎样的技术奥秘?本篇文章将为您深度剖析一套先进的AI技术架构,从基础设施到应用层,每一层都充满了惊喜和启发。读完本文,您不仅能看懂AI的底层逻辑,还能掌握其对各行业变革的潜力与方向。一、基础设施层:AI技术的坚实地基基础设施层是AI技术架构的“地基”,为整个系统提供计算能力和
- 嵌入式必备知识总结(一)
Sun^Shine
嵌入式基础嵌入式硬件linux服务器学习单片机
计算机系统结构计算机系统结构是计算机科学中的一个重要领域,研究计算机系统的设计和组织。计算机系统结构主要关注以下几个方面:1.计算机硬件组成a.中央处理单元(CPU)CPU是计算机的核心,负责执行指令并控制其他硬件组件。算术逻辑单元(ALU):执行算术和逻辑运算。控制单元(CU):解释指令并引导操作。寄存器:用于临时存储数据和指令。缓存(Cache):高速存储器,存储常用数据以提高访问速度。b.存
- 前端开发之性能优化
水煮白菜王
前端前端面试性能优化前端javascript
本文章对各大学习技术论坛知识点,进行总结、归纳自用学习,共勉文章目录1.[CDN](https://www.bootcdn.cn/)2.懒加载3.缓存4.图片压缩5.图片分割6.sprite7.CodeSplitting8.gzip9.GPU加速10.Ajax11.TreeShaking12.ResourceHints技术或策略描述CDN(内容分发网络)提高网站访问速度和可靠性,通过全球分布的节点
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb