缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库,造成数据库压力,也让缓存没有发挥出应有的作用
当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,这个数据即使数据库不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了,但这样缓存大量空对象也会消耗内存
布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,假设布隆过滤器判断这个数据不存在,则直接返回,优点在于节约内存空间,但会存在误判,即过滤器判断该数据不存在是准确的,但判断存在时就不一定准确,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突
在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的
现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。
由于布隆过滤器实现得较为复杂,本项目采用方案一即数据库不存在数据时直接缓存空对象,对查询商铺信息方法进行改造
@Override
public Result queryById(Long id) {
//根据业务代码组装key
String key = CACHE_SHOP_KEY + id;
//从redis中获取商铺信息
String shopJson = stringRedisTemplate.opsForValue().get(key);
//判断有值的情况
if (StrUtil.isNotBlank(shopJson)) {
//将json转化为shop对象直接返回
Shop shop = JSONUtil.toBean(shopJson, Shop.class);
return Result.ok(shop);
}
//对无值情况进行校验
if(shopJson!=null){
return Result.fail("店铺不存在");
}
Shop shop = getById(id);
if (shop == null) {
//将当前的key的空对象缓存到redis中,过期时间设置稍微短一点
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
return Result.fail("店铺不存在");
}
//将数据库查询的数据写入缓存,并设置过期时间
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
//返回
return Result.ok(shop);
}
缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
给不同的Key的TTL添加随机值,使得key不会同时失效
利用Redis集群提高服务的可用性
给缓存业务添加降级限流策略
给业务添加多级缓存
缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。比如双十一做活动的热门商品数据
情景分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大
因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。这一方案的好处是保证了数据的强一致性,也就是每个线程查询的数据都是最新的数据
假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。
核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询。如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿
操作锁的代码:
核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,类似于mybatisplus的乐观锁,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。
private boolean tryLock(String key) {
Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
return BooleanUtil.isTrue(flag);
}
private void unlock(String key) {
stringRedisTemplate.delete(key);
}
锁的代码应该尽量小规模,这里只在访问数据库的时候加上互斥锁
public Shop queryWithMutex(Long id) {
//根据业务代码组装key
String key = CACHE_SHOP_KEY + id;
//从redis中获取商铺信息
String shopJson = stringRedisTemplate.opsForValue().get(key);
//判断有值的情况
if (StrUtil.isNotBlank(shopJson)) {
//将json转化为shop对象直接返回
Shop shop = JSONUtil.toBean(shopJson, Shop.class);
return shop;
}
//对无值情况进行校验
if (shopJson != null) {
return null;
}
//拼装获取锁的key
String lockKey = LOCK_SHOP_KEY + id;
Shop shop = null;
try {
//获取锁
boolean b = tryLock(lockKey);
//获取锁失败要休眠然后继续重试,看缓存中是否已经被别的线程写入数据
if (!b) {
Thread.sleep(50);
return queryWithMutex(id);
}
shop = getById(id);
if (shop == null) {
//将当前的key的空对象缓存到redis中,过期时间设置稍微短一点
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
return null;
}
//将数据库查询的数据写入缓存,并设置过期时间
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally {
unlock(lockKey);
}
//返回
return shop;
}
我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案,让热点key常驻于内存。
过期时间设置在redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个新线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁,而线程1直接进行返回数据,并不会阻塞等待,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。也就是该方案并不会像互斥锁那样,需要等待堵塞更新数据,导致性能下降,而是直接返回旧数据,但这也带来了数据的不一致性的问题。
思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。
由于需要有逻辑过期的时间变量,需要拓展变量,这里采用redisdata的方式直接将shop封装成redisdata的成员变量,同时该对象具有过期时间这个变量
@Data
public class RedisData {
private LocalDateTime expireTime;
private Object data;
}
我们需要进行缓存预热,就是将热点key的数据提前存入redis中,这里使用单元测试将数据写入redis中,注意写入的是redisdata这个对象
@Override
public void saveShopToRedis(Long id, Long expireSeconds) {
Shop show = getById(id);
//封装redisdata
RedisData redisData = new RedisData();
redisData.setData(show);
redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));
stringRedisTemplate.opsForValue().set(CACHE_SHOP_KEY+id,JSONUtil.toJsonStr(redisData));
}
这里开启线程去构建新数据,采用的是开启线程池,节约资源
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return shop;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
CACHE_REBUILD_EXECUTOR.submit( ()->{
try{
//重建缓存
this.saveShop2Redis(id,20L);
}catch (Exception e){
throw new RuntimeException(e);
}finally {
unlock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return shop;
}