102、Spark Streaming之数据处理原理剖析与源码分析(block与batch关系透彻解析)

流程图

数据处理原理剖析.png

每隔我们设置的batch interval 的time,就去找ReceiverTracker,将其中的,从上次划分batch的时间,到目前为止的这个batch interval time间隔内的block封装为一个batch
其次,会将这个batch中的数据,去创建为一个初始的RDD,一个batch内,在这段时间封装了几个block,就代表这个batch对应的RDD内会有几个partition
这个batch对应的RDD的partition决定了数据处理阶段的并行度,这个跟调优关系很大,如果想增加数据处理阶段的性能,就考虑增加并行度,那么就考虑缩短block interval
只有output操作中,使用了ForEachStream,其中定义了generatorJob()方法,在数据处理阶段,才触发针对接收到的一个一个batch的数据,触发小的job,去处理该batch的数据
最后一步,去找JobScheduler去调度job,job的输入RDD,就是batch对应的RDD

源码

入口,JobGenerator的generateJobs()方法

 /**
    * 定时,调度generateJobs()方法,传入一个time,其实就是一个batch interval内的时间段
    */
  private def generateJobs(time: Time) {
    // Set the SparkEnv in this thread, so that job generation code can access the environment
    // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
    // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
    SparkEnv.set(ssc.env)
    Try {
      // 找到ReceiverTracker,调用其allocateBlocksToBatch方法,将当前时间段内的block分配给一个batch,并为其
      // 创建一个RDD
      jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
      // 调用DSteamGraph的generateJobs()来根据程序定义的DSteam之间的依赖关系和算子,生成job
      graph.generateJobs(time) // generate jobs using allocated block
    } match {
        // 如果成功创建了job
      case Success(jobs) =>
        // 从ReceiverTracker中,获取当前batch interval对应的block数据
        val receivedBlockInfos =
          jobScheduler.receiverTracker.getBlocksOfBatch(time).mapValues { _.toArray }
        // 用jobScheduler提交job,其对应的原始数据,是那批block
        jobScheduler.submitJobSet(JobSet(time, jobs, receivedBlockInfos))
      case Failure(e) =>
        jobScheduler.reportError("Error generating jobs for time " + time, e)
    }
    eventActor ! DoCheckpoint(time)
  }

你可能感兴趣的:(102、Spark Streaming之数据处理原理剖析与源码分析(block与batch关系透彻解析))