- 《揭秘机器学习中的交叉验证:模型评估的基石》
人工智能机器学习
在机器学习的复杂领域中,构建一个精准有效的模型是众多从业者的核心目标。然而,模型的性能评估绝非易事,它关乎模型能否在实际应用中发挥作用,而交叉验证则是这一过程中的关键技术,是保障模型可靠性与泛化能力的重要手段。交叉验证的核心意义抵御过拟合风险在机器学习的训练过程中,模型可能会过度适应训练数据的细节和噪声,从而在新数据上表现不佳,这就是过拟合现象。交叉验证通过将数据集划分为多个子集,模型在不同子集上
- Redis分布式缓存面试题
hxj..
面试分布式缓存redis分布式分布式缓存
为什么使用分布式缓存?1.提升性能降低延迟:将数据缓存在离应用更近的地方,减少数据访问时间。减轻数据库压力:缓存频繁访问的数据,减少对后端数据库的请求,提升系统响应速度。2.扩展性水平扩展:通过增加节点,分布式缓存可以轻松扩展,处理更大规模的数据和请求。负载均衡:数据分布在不同节点上,避免单点瓶颈,提升系统整体吞吐量。3.高可用性容错能力:即使某个节点故障,其他节点仍能继续提供服务,确保系统稳定运
- 国内三大云数据库测试对比
m0_63984008
数据库腾讯云阿里云
导读腾讯云数据库提供了可视化的运维操作页面和自动备份的能力,降低了数据库运维的门槛。同时云数据库还支持高可用架构,对数据的安全性和服务的可靠性更有保障。另外有的云数据库厂商还提供了诸如数据库审计、慢查询分析、数据回档等能力,大大减轻了数据库运维和DBA的工作量。我司CTO和技术总监都是腾讯系的,所以我们一开始就选用腾讯云的服务。他们家的云数据库提供了可视化的运维操作页面和自动备份的能力,降低了数据
- DeepSeek超强搭档!这8款免费神器让你的效率翻倍
a小胡哦
Deepseekvscodegithub
作为AI领域的效率神器,DeepSeek凭借其强大的智能问答、文件解读和代码生成能力,已成为学习办公的必备工具。但如何让它发挥「1+1>2」的效果?我整理了8款免费软件,搭配DeepSeek让你的效率原地起飞!建议收藏⭐一、办公效率组合拳:告别加班,秒变职场达人WPSOffice推荐理由:免费+全功能办公套件,搭配DeepSeek的文档解析功能,可快速提取合同/报告重点,自动生成摘要。神级用法:用
- netty使用场景
酷爱码
java技术教程java
Netty是一个Java网络编程框架,提供了高性能、高可扩展性的网络通信能力。它通常被用于以下场景:服务器端网络编程:Netty可用于构建各种服务器端应用程序,如Web服务器、游戏服务器、聊天服务器等。客户端网络编程:Netty也可以用于构建客户端应用程序,用于与服务器进行通信。分布式系统:Netty可在分布式系统中作为通信框架,用于节点之间的数据传输和通信。高性能网络应用:由于Netty具有高性
- 利用GPT开发应用005:Codex、Turbo、ChatGPT、GPT-4
翰墨之道
GPT开发GPT应用专栏GPT-1GPT-3GPT开发CodexTurboChatGPT
文章目录一、GPT-3Codex二、GPT-3.5Turbo二、ChatGPT三、GPT-4一、GPT-3Codex 2022年3月,OpenAI发布了GPT-3Codex的新版本。 这个新模型具有编辑和插入文本的能力。它们是通过截至2021年6月的数据进行训练的,并被描述为比之前版本更强大。到2022年11月底,OpenAI开始将这些模型称为GPT-3.5系列的一部分。 Codex系列模型
- Python 文本处理神器:textwrap 模块深度解析
tekin
Python编程秘籍库python开发语言Python文本处理textwrap模块深度解析
Python文本处理神器:textwrap模块深度解析在Python编程中,处理文本是一项常见任务,比如自动换行、填充文本、缩短文本等。textwrap模块就像是一个贴心助手,专门用来解决这些问题。本文将带你深入了解textwrap模块的各种功能,通过丰富的示例代码和清晰的讲解,让你轻松掌握它的使用技巧,提升文本处理能力。文章目录Python文本处理神器:textwrap模块深度解析一、`text
- 详细介绍STM32(32位单片机)外设应用
日记成书
反正看不懂系列stm32学习
以下是关于STM32外设应用的详细介绍,结合其功能特点及实际应用场景进行分类说明:一、基本接口与数字外设GPIO(通用输入输出端口)功能:支持输入/输出模式切换,可配置为推挽、开漏、上拉/下拉等模式,驱动能力可调。应用:控制LED、蜂鸣器等简单外设;读取按键、传感器信号(需结合消抖电路或软件消抖算法);复用为其他外设功能引脚(如SPI、I2C)。代码示例://配置PA0为推挽输出(HAL库)GPI
- 字节的豆包和Kimi 的优劣势对比
eso1983
javapython算法
字节豆包、Kimi(月之暗面)和深度求索(DeepSeek)三款AI助手的对比分析,涵盖核心技术、功能特性、优劣势及适用场景.1.核心能力对比维度豆包(字节跳动)Kimi(月之暗面)DeepSeek(深度求索)技术基础基于字节自研云雀大模型,多模态能力突出,依托抖音/头条数据生态。Moonshot自研长文本大模型,专注超长上下文理解。自研模型聚焦复杂逻辑推理与代码生成,垂直领域优化。长文本处理支持
- Unity3D 实现骨骼动画的 GPU Skinning 详解
Thomas_YXQ
nginx运维游戏开发Unity3D3d架构ui
引言在游戏开发中,骨骼动画是一种常见的动画技术,它通过骨骼的变换来驱动模型的顶点变化,从而实现角色的动画效果。传统的骨骼动画通常在CPU上进行计算,但随着硬件的发展,GPU的计算能力越来越强,GPUSkinning技术逐渐成为优化骨骼动画性能的重要手段。本文将详细介绍如何在Unity3D中实现GPUSkinning,并提供相关的代码实现。对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交
- 【模块】AKConv卷积模块
dearr__
扒网络模块深度学习人工智能
论文《AKConv:ConvolutionalKernelwithArbitrarySampledShapesandArbitraryNumberofParameters》1、作用AKConv旨在解决深度学习中标准卷积操作的两个固有限制:限定在局部窗口内,限制了从其他位置捕获信息的能力;卷积核固定大小,限制了对不同目标形状和大小的适应能力。这种新方法允许卷积核具有任意参数和采样形状,提供了一种灵活
- AI探索笔记:线性回归
安意诚Matrix
机器学习笔记人工智能笔记线性回归
前言写这篇博客,主要是自己来练练手。网络上教程已经是数不胜数,也都讲得非常清楚了。但自己不动手,知识和能力还是别人的。下面分别用传统方法(sklearn)和神经网络(pytorch)来解决线性回归问题。内容什么是线性回归线性回归(LinearRegression)是统计学和机器学习中最基础且广泛使用的预测模型,用于建立**自变量(输入特征)与因变量(输出目标)**之间的线性关系模型。其核心思想是通
- AI产品怎样才能打造出像人类一样聪明和有情商?
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介随着人工智能技术的飞速发展、算法能力的不断增强、数据集的积累、计算设备的普及,人工智能已经成为各个行业、各个领域的重要突破性技术。然而,面对这一技术带来的巨大变革,如何为用户提供更加人性化的服务,并让人工智能模型对用户输入做出智能回应,则成为了一个长期且艰难的挑战。今天,我们将讨论一些常见的人机交互相关的问题,如语言模型、对话系统、生成模型等,并从中可以窥视到人
- 基于MPDIoU与InnerMPDIoU的YOLOv8细节捕捉能力优化探讨
向哆哆
YOLO创新涨点系列YOLO目标跟踪人工智能yolov8
文章目录一、损失函数在YOLO中的作用二、MPDIoU:Multi-partDistanceIntersectionoverUnionMPDIoU的基本概念MPDIoU公式MPDIoU代码实现解释三、InnerMPDIoU:InnerMulti-partDistanceIoUInnerMPDIoU的基本概念InnerMPDIoU公式InnerMPDIoU代码实现解释五、MPDIoU与InnerMP
- 如何用对提示词?快速解锁大模型的隐藏能力
人工智能
你是否留意到,有人借助AI高效完成工作甚至实现盈利,然而大部分人却仅用AI获取一些无关紧要的内容。为何会出现这种差异呢?究其原因,主要在于与AI沟通技巧的不同。无论使用何种模型,提示词的编写技巧都具有通用性。接下来,本文将详细介绍如何编写prompt(提示词),从而与大模型实现更有效的沟通。一、提示词的构成首先,我们来剖析一个prompt所应包含的关键信息:任务(指令):明确需要完成的任务以及期望
- DeepSeek应用领域全景解析:驱动产业智能化升级的六大核心方向
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能AI编程深度学习
一、引言:DeepSeek为何成为产业智能化首选?作为国产大模型的标杆产品,DeepSeek凭借其万亿级参数规模、MoE混合专家架构和多模态交互能力,正在重构产业智能化升级的技术路径。本文基于官方技术文档与行业实践案例,深入剖析DeepSeek在六大核心领域的应用突破与商业价值实现二、技术底座:支撑多领域落地的三大创新架构1.Transformer-XL增强架构通过引入Multi-HeadLate
- DeepSeek全栈接入指南:从零到生产环境的深度实践
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能深度学习机器学习
第一章:DeepSeek技术体系全景解析1.1认知DeepSeek技术生态DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在:1.1.1多模态智能引擎自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算机视觉:提供图像分类、目标检测、OCR识别等CV能力语音交互:包含语音识别(ASR)、语音合成(TTS)及声纹识别
- 软件供应链安全工具链研究系列—RASP自适应威胁免疫平台(下篇)
DevSecOps选型指南
安全网络软件供应链安全工具HW
在“软件供应链安全工具链研究系列—RASP自适应威胁免疫平台-上篇”中我们提到了RASP工具的基本能力、原理以及工具的应用场景,了解到了RASP工具在各场景下发挥的价值。那么在当今高强度攻防对抗的大场景下,RASP作为最后一道防线,不论是从高危漏洞修复还是应对高级攻击技术,都有着更高的要求。1.工具应具备的能力建议1.1技术能力方面建议1.1.1虚拟补丁技术RASP在为应用系统赋予威胁免疫能力的同
- 深入拆解Nightingale(一)
weixin_47028810
夜莺运维github开源软件golang
前言了解了一段时间的开源项目夜莺,虽说看了一些官方提供了文档和还有视频,并且有幸参加快猫的黄埔营培训,算是新手入门水平。还是存在很多问题不懂,我想关键应该其中细节并没有很了解,另一方面也听大佬说‘阅读优秀的源代码是软件工程师提高自己编程能力和学习开源框架的最佳手段之一’,所有我打算写一系列关于夜莺监控在源码级别的分析,希望能做到深入拆解的地步并且深入浅出的表达出来,哈哈哈。ps夜莺是源于滴滴,目前
- 大语言模型:数据分析报告自动化的未来趋势
theskylife
个人随笔数据分析语言模型数据分析自动化人工智能大语言模型
目录写在开头1.数据分析报告的传统挑战时间消耗技术壁垒错误风险可扩展性问题更新频率限制用户交互和定制化不足整合新技术的挑战2.大语言模型在报告生成中的作用自动化文本生成增强准确性和丰富性实时数据处理能力提高可访问性和用户交互3.一种实现的思路3.1.明确目标与设定任务3.2.数据准备3.3.使用大语言模型生成初步内容3.4.内容整合与优化3.5.数据可视化3.6.报告完善与发布3.7实际应用中的关
- 脑洞大开!用DeepSeek辅助AI绘图!
二哥不像程序员
人工智能DeepSeekAI作画
DeepSeek应用(AI绘图篇)DeepSeek作为当前最好的AI大模型之一,其强大的文本生成能力被广泛的应用于各个领域,本文我们来聊聊用DeepSeek来辅助AI绘图。(文末附多款可以免费使用的AI绘图工具)一、DeepSeek&AI绘图作为语言模型,DeepSeek本身没有直接绘图的能力,换个思路,让DeepSeek按照我们的想法去创造绘图提示词,我们再讲提示词提供给AI绘图工具就可以了。操
- LangChain入门:使用Python和通义千问打造免费的Qwen大模型聊天机器人
闯江湖50年
langchainpython机器人人工智能
前言LangChain是一个用于开发由大型语言模型(LargeLanguageModels,简称LLMs)驱动的应用程序的框架。它提供了一个灵活的框架,使得开发者可以构建具有上下文感知能力和推理能力的应用程序,这些应用程序可以利用公司的数据和APIs。这个框架由几个部分组成。LangChain库:Python和JavaScript库。包含了各种组件的接口和集成,一个基本的运行时,用于将这些组件组合
- 【数据分析】4 商业数据分析技能模型总结
loyd3
数据分析数据分析数据挖掘
优秀的商业分析师需要具备的能力数据分析能力逻辑思维能力赢得结果能力一、数据分析能力扩展:工具链生态与进阶场景1.数据获取技术升级企业级数据源管理:数据湖架构(AWSS3/阿里云OSS)与数据仓库(Snowflake/Redshift)权限管理API自动化采集(Postman+PythonRequests模块)反爬虫策略突破(IP代理池/Selenium模拟登录)新兴数据源拓展:社交舆情数据(Twi
- 智算中心的核心硬件是什么?
Imagination官方博客
本文来源:游方AI智算中心,作为人工智能时代的关键基础设施,其核心硬件的构成与性能直接影响着智能计算的效率与质量。以下是对智算中心核心硬件的详细阐述:一、AI芯片AI芯片是专门为加速人工智能计算而设计的硬件,能够与各种AI算法协同工作,满足对算力的极高需求。当前主流的AI加速计算芯片包括:1、GPU(图形处理器)GPU是智算中心的算力担当,其强大的并行计算能力使其在深度学习领域大放异彩。GPU芯片
- 2025,AI变现有哪些机遇与挑战?
Imagination官方博客
人工智能
大模型的能力边界在不断拓宽,主流云端大模型普遍具备了多模态推理能力。技术路线上,也不再局限于算力堆叠,而是探索强化学习、符号推理、类脑计算等新路径。并且,投入更小、更垂直的小模型涌现,为特定领域的应用提供了更高效的解决方案。与此同时,我国大模型领域仍然存在多方面痛点,例如:云端训练成本高、高端算力存在“卡脖子”风险、优质数据匮乏、人才缺口、AI算法开源生态仍需强化、数据安全和隐私问题等等,仍是市场
- 哪个分账系统好一些
多语言电商系统
电商分账系统支付分账系统
根据当前市场主流方案和行业实践,不同规模及业务场景下的分账系统推荐如下:一、按企业规模选择中小型电商/初创企业支付宝分账系统:依托超12亿用户生态,支持跨境分账能力,适合基础分账场景微信支付分账:无缝对接社交电商场景,支持多维度分账规则配置商淘云基础版:提供合规资金存管方案,规避"二清"风险中大型平台企业商淘云旗舰版:支持动态分账比例和自动结算,满足复杂业务需求微众银行分账通:通过
- Spark之PySpark
james二次元
大数据SparkPythonPySpark
PySpark是ApacheSpark的PythonAPI,它允许开发者使用Python编程语言进行大规模数据处理和分析。ApacheSpark是一个快速、通用、可扩展的大数据处理引擎,支持批处理、流处理、机器学习、图计算等多种数据处理模式。PySpark使得Python开发者能够利用Spark强大的分布式计算能力,处理大数据集,并执行高效的并行计算。一、PySpark核心概念1.RDD(弹性分布
- 作为一名测试工程师如何学习Kubernetes(k8s)技能
网络安全小宇哥
学习kubernetes容器计算机网络web安全安全dubbo
前言Kubernetes(K8s)作为云原生时代的关键技术之一,对于运维工程师、开发工程师以及测试工程师来说,都是一门需要掌握的重要技术。作为一名软件测试工程师,学习Kubernetes是一个有助于提升自动化测试、容器化测试以及云原生应用测试能力的重要过程。以下是一个系统性的学习路径和建议:一、了解基础概念1)容器技术:学习Docker等容器技术的基础知识,了解容器的基本概念、镜像、容器运行与管理
- VIT(Vision Transformer)【超详细 pytorch实现
周玄九
计算机视觉transformer深度学习人工智能
CNN的局限性:传统的CNN通过局部卷积核提取特征,虽然可以通过堆叠多层卷积扩大感受野,但仍然依赖于局部信息的逐步聚合,难以直接建模全局依赖关系。ViT的优势:ViT使用自注意力机制(Self-Attention),能够直接捕捉图像中所有patch(图像块)之间的全局关系。这种全局建模能力在处理需要长距离依赖的任务(如图像分类、目标检测)时表现更好。全流程图像预处理+分块图像尺寸标准化,如(224
- 实现数据DLP加密鸿蒙示例代码
介绍数据防泄漏服务(DataLossPrevention,简称为DLP),是系统提供的系统级的数据防泄漏解决方案,提供文件权限管理、加密存储、授权访问等能力,数据所有者可以基于账号认证对机密文件进行权限配置,允许拥有只读、编辑、拥有者权限,随后机密文件会通过密文存储,在支持DLP机制的设备上可以通过端云协调进行认证授权,获取对数据的访问和修改的能力。本示例演示了如何创建、编辑一个dlp文件。实现数
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =