DeepLearnToolbox使用总结

GitHub链接:DeepLearnToolbox


 

DeepLearnToolbox

 

A Matlab toolbox for Deep Learning.

Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain's apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is Learning Deep Architectures for AI

Directories included in the toolbox

NN/ - A library for Feedforward Backpropagation Neural Networks

CNN/ - A library for Convolutional Neural Networks

DBN/ - A library for Deep Belief Networks

SAE/ - A library for Stacked Auto-Encoders

CAE/ - A library for Convolutional Auto-Encoders

util/ - Utility functions used by the libraries

data/ - Data used by the examples

tests/ - unit tests to verify toolbox is working

For references on each library check REFS.md

Setup

  1. Download.
  2. addpath(genpath('DeepLearnToolbox'));

Windows下把文件夹加入 path 即可

 

%LiFeiteng 



path = pwd;

files = dir(path);



for i = 3:length(files)

    

    if files(i).isdir        

        file = files(i).name;       

        addpath([path '/' file])

        disp(['add ' file ' to path!'])

    end   

    

end


我不打算解析代码,想从代码里面学算法是stupid的;有相应的论文,readlist,talk等可以去学习。

 

DeepLearnToolbox单隐藏层NN的优化策略:mini-Batch SGD

 

function [nn, L]  = nntrain(nn, train_x, train_y, opts, val_x, val_y)

%NNTRAIN trains a neural net

% [nn, L] = nnff(nn, x, y, opts) trains the neural network nn with input x and

% output y for opts.numepochs epochs, with minibatches of size

% opts.batchsize. Returns a neural network nn with updated activations,

% errors, weights and biases, (nn.a, nn.e, nn.W, nn.b) and L, the sum

% squared error for each training minibatch.



assert(isfloat(train_x), 'train_x must be a float');

assert(nargin == 4 || nargin == 6,'number ofinput arguments must be 4 or 6')



loss.train.e               = [];

loss.train.e_frac          = [];

loss.val.e                 = [];

loss.val.e_frac            = [];

opts.validation = 0;

if nargin == 6

    opts.validation = 1;

end



fhandle = [];

if isfield(opts,'plot') && opts.plot == 1

    fhandle = figure();

end



m = size(train_x, 1);



batchsize = opts.batchsize;

numepochs = opts.numepochs;



numbatches = m / batchsize;



assert(rem(numbatches, 1) == 0, 'numbatches must be a integer');



L = zeros(numepochs*numbatches,1);

n = 1;

for i = 1 : numepochs

    tic;

    

    kk = randperm(m);

    for l = 1 : numbatches

        batch_x = train_x(kk((l - 1) * batchsize + 1 : l * batchsize), :);

        

        %Add noise to input (for use in denoising autoencoder)

        if(nn.inputZeroMaskedFraction ~= 0)

            batch_x = batch_x.*(rand(size(batch_x))>nn.inputZeroMaskedFraction);

        end

        

        batch_y = train_y(kk((l - 1) * batchsize + 1 : l * batchsize), :);

        

        nn = nnff(nn, batch_x, batch_y);

        nn = nnbp(nn);

        nn = nnapplygrads(nn);

        

        L(n) = nn.L;

        

        n = n + 1;

    end

    

    t = toc;

    

    if ishandle(fhandle)

        if opts.validation == 1

            loss = nneval(nn, loss, train_x, train_y, val_x, val_y);

        else

            loss = nneval(nn, loss, train_x, train_y);

        end

        nnupdatefigures(nn, fhandle, loss, opts, i);

    end

        

    disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds' '. Mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1))))]);

    nn.learningRate = nn.learningRate * nn.scaling_learningRate;

end

end


1.不管是在 nntrain、 nnbp还是nnapplygrads中我都没看到 对算法收敛性的判断,

 

而且在实测的过程中 有观察到 epoch过程中 mean-squared-error有 下降-上升-下降 的走势——微小抖动在SGD中 算是正常

DeepLearnToolbox使用总结

多数还都是在下降(epoch我一般设为 10-40,这个值可能偏小;Hinton 06 science的文章代码记得epoch了200次,我跑了3天也没跑完)

在SAE/CNN等中 也没看到收敛性的判断。

2.CAE  没有完成

3.dropout的优化策略也可以选择


我测试了 SAE CNN等,多几次epoch(20-30),在MNIST上正确率在 97%+的样子。

其实cost-function 可以有不同的选择,如果使用 UFLDL的优化方式(固定的优化方法,传入cost-function的函数句柄),在更改cost-function上会更自由。


可以改进的地方:

1. mini-Bathch SGD算法 增加收敛性判断

2.增加 L-BFGS/CG等优化算法

3.完善CAE等

4.增加min KL-熵的 Sparse Autoencoder等

5.优化算法增加对 不同cost-function的支持










 

你可能感兴趣的:(tool)