原文:flask与fastapi性能测试 - 掘金
双验项目通过MQ接受业务系统的业务数据,通过运行开发者开发的python脚本执行业务系统与财务系统数据的校验。 双验系统需要每天运行大量的python脚本。目前使用falsk日运行6W+次python脚本,由于性能存在瓶颈,需要引入 新的fastapi框架,来解决cpu、内存性能压榨不够及目前的性能瓶颈。本文目标给出两者的性能测试报告。 给出选择哪个框架的性能数据支撑。
apache ab提醒性能测试
markdown
复制代码
yum -y install httpd-tools
diff
复制代码
-n 执行的请求总数 -c 并发数, 同时执行的数量, c不能大于n -p post请求指定的文件 -T header Content-type值,默认为 'text/plain'
c
复制代码
ab -c 10 http://127.0.0.1:8081/cppla
java
复制代码
ab -n 100 -c 10 -T 'application/json' -p httpjson.txt http://127.0.0.1:8081/cppla1 // httpjson.txt的内容 {"recordId": 123}
模拟真实每次请求调用脚本,分别对每一个数量级的请求量进行测试。
请求总数 | 每次并发数 | 每次并发数 | 每次并发数 |
---|---|---|---|
100 | 10 | 100 | 1000 |
1000 | 10 | 100 | 1000 |
10000 | 10 | 100 | 1000 |
20000 | 10 | 100 | 1000 |
30000 | 10 | 100 | 1000 |
40000 | 10 | 100 | 1000 |
50000 | 10 | 100 | 1000 |
60000 | 10 | 100 | 1000 |
80000 | 10 | 100 | 1000 |
处理post请求,延时3s返回结果。flask启动20个进程。fastapi启动一个进程。
python
复制代码
## flask 代码 # coding: utf-8 from gevent import monkey from gevent.pywsgi import WSGIServer import requests import datetime import os from multiprocessing import cpu_count, Process from flask import Flask, jsonify,request import json import traceback import importlib from loguru import logger import time app = Flask(__name__) # 执行run方法 @app.route("/cppla1", methods=['POST', 'GET']) def cppla1(): data = request.json time.sleep(3) return data # 启动监听ip、端口 def run(MULTI_PROCESS): if MULTI_PROCESS == False: WSGIServer(('0.0.0.0', 8081), app).serve_forever() else: mulserver = WSGIServer(('0.0.0.0', 8081), app) mulserver.start() def server_forever(): mulserver.start_accepting() mulserver._stop_event.wait() # for i in range(cpu_count()): for i in range(20): logger.info('启动进程第几个:{}', i) p = Process(target=server_forever) p.start() if __name__ == "__main__": # 单进程 + 协程 # run(False) # 多进程 + 协程 log_init() run(True)
python
复制代码
## fastapi # coding: utf-8 # https://www.javazhiyin.com/80750.html # import web framework from fastapi import FastAPI from fastapi.encoders import jsonable_encoder from fastapi.responses import JSONResponse # import base lib import datetime import os import requests import json import traceback import importlib from loguru import logger import time app = FastAPI() @app.post("/cppla1") def function_benchmark(data:dict): time.sleep(3) return {"item": data} # 启动监听ip、端口 if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8081)
框架类型 | 请求总数 | 每次并发数 | 耗时(s) | 每次并发数 | 耗时(s) | 每次并发数 | 耗时(s) |
---|---|---|---|---|---|---|---|
fastapi | 100 | 10 | 33.119 | 100 | 12.148 | 1000 | ab命令不支持 |
flask | 100 | 10 | 45.088 | 100 | 81.106 | 1000 | ab命令不支持 |
fastapi | 1000 | 10 | 304.057 | 100 | 78.283 | 1000 | 78.631 |
flask | 1000 | 10 | 327.472 | 100 | 198.273 | 1000 | 303.442 |
fastapi | 10000 | 10 | x | 100 | 754.296 | 1000 | 757.719 |
flask | 10000 | 10 | x | 100 | 1550.119 | 1000 | 1970.427 |
fastapi | 20000 | 10 | x | 100 | x | 1000 | x |
flask | 20000 | 10 | x | 100 | x | 1000 | x |
fastapi | 30000 | 10 | x | 100 | x | 1000 | x |
flask | 30000 | 10 | x | 100 | x | 1000 | x |
fastapi | 40000 | 10 | x | 100 | x | 1000 | x |
flask | 40000 | 10 | x | 100 | x | 1000 | x |
fastapi | 50000 | 10 | x | 100 | x | 1000 | x |
flask | 50000 | 10 | x | 100 | x | 1000 | x |
fastapi | 60000 | 10 | x | 100 | x | 1000 | x |
flask | 60000 | 10 | x | 100 | x | 1000 | x |
fastapi | 80000 | 10 | x | 100 | x | 1000 | x |
flask | 80000 | 10 | x | 100 | x | 1000 | x |
标签:
后端