扩散模型 (Diffusion Model) 之最全详解图解

目前最近在 AI 作画这个领域 Transformer 火的一塌糊涂,AI 画画效果从 18 年的 DeepDream噩梦中惊醒过来,开始从 2022 年 OpenAI 的 DALL·E 2[2] 引来插画效果和联想效果都达到惊人效果。
扩散模型 (Diffusion Model) 之最全详解图解_第1张图片
但是要了解:Transformer 带来 AI + 艺术,从语言开始遇到多模态,碰撞艺术火花 这个主题,需要引申很多额外的知识点,可能跟 CV、NLP 等领域大力出奇迹的方式不同,AI + 艺术会除了遇到 Transformer 结构以外,还会涉及到 VAE、ELBO、Diffusion Model 等一系列跟数学相关的知识。
Transformer + Art 系列中,今天新挖一个 Diffusion Models 的坑,跟 VAE 一样原理很复杂,实现很粗暴。据说生成扩散模型以数学复杂闻名,似乎比 VAE、GAN 要难理解得多,是否真的如此?扩散模型能少来点数学吗?扩散模型真的做不到一个简单点的理解吗?
在本文中,我们将研究扩散模型的理论基础,然后演示如何在 PyTorch 中使用扩散模型生成图像。Let’s dive in!

1. Diffusion Model 基本介绍

扩散模型(Diffusion Models)发表以来其实并没有收到太多的关注,因为他不像 GAN 那样简单粗暴好理解。不过最近这几年正在生成模型领域异军突起,当前最先进的两个文本生成图像——OpenAI 的 DA

你可能感兴趣的:(人工智能算法前沿,人工智能,深度学习,chatgpt,扩散模型,计算机视觉,stable,diffusion)