- 大白话解释深度学习中多尺度特征融合及其意义
来自宇宙的曹先生
深度学习人工智能
想象一下,你正在看一幅城市街道的照片。在这张照片中,你可能会看到:远处的小汽车,它们在图像中看起来很小。近处的大巴士,它们在图像中看起来很大。还有一些行人,他们可能在不同的距离上,大小各异。假设你想训练一个计算机程序来识别和分割这些不同的物体(汽车、巴士、行人)。如果这个程序只能在一个固定的尺度上“看”图像,比如说只能处理大物体,它可能会错过那些远处的小汽车,因为这些小汽车在图像中占据的像素很少。
- SpringBoot多数据源动态切换方案:AbstractRoutingDataSource详解
fanxbl957
Webspringboot后端java
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot多数据源动态切换
- TensorRT-LLM:大模型推理加速引擎的架构与实践
前言:技术背景与发展历程:随着GPT-4、LLaMA等千亿级参数模型的出现,传统推理框架面临三大瓶颈:显存占用高(单卡可达80GB)、计算延迟大(生成式推理需迭代处理)、硬件利用率低(Transformer结构存在计算冗余)。根据MLPerf基准测试,原始PyTorch推理的token生成速度仅为12.3tokens/s(A100显卡)。一、TensorRT-LLM介绍:TensorRT-LLM是
- 构建企业级大模型运行监控体系:健康度五级指标与实战部署路径全解析
构建企业级大模型运行监控体系:健康度五级指标与实战部署路径全解析关键词:模型运行监控、健康度分级体系、DeepSeek、私有化部署、Prometheus、Grafana、异常检测、推理稳定性、性能观测、可视化大屏摘要:在DeepSeek大模型私有化部署的生产环境中,传统的“是否可用”监控已难以满足对模型稳定性、推理质量与异常风险的精细管理需求。为此,企业必须构建一套基于五级健康度模型的全维监控体系
- 深入解读MaaS技术架构:从模型服务到智能部署的全流程分析
Cc不爱吃洋葱
架构人工智能大语言模型大模型智能部署MaaS技术架构LLM
随着人工智能(AI)的迅速发展,MaaS(ModelasaService,模型即服务)技术架构应运而生。它通过将复杂的AI模型封装为标准化服务,降低了模型的开发和部署门槛,帮助企业快速实现业务场景的智能化升级。本文将深入解析MaaS技术架构,详细阐述其各个组成部分以及如何在实际应用中高效发挥其功能。一、使用方层:从应用接入到业务赋能MaaS技术架构的顶层是使用方层,它主要面向第三方应用,是企业与M
- 企业级多模型服务架构(MaaS)私有部署实战指南:统一调度、模型隔离与服务编排全路径解析
观熵
架构人工智能私有化部署
企业级多模型服务架构(MaaS)私有部署实战指南:统一调度、模型隔离与服务编排全路径解析关键词:多模型服务架构、MaaS、私有化部署、模型管理、推理调度、模型编排、TritonInferenceServer、DeepSeek、模型隔离、企业级AI平台摘要:随着企业对多任务、多模型能力的需求日益增长,MaaS(Model-as-a-Service)架构已成为私有部署中的关键支撑技术之一。该文聚焦当前
- AI智能体——实现关键技术
1、CoT思维链CoT(ChainofThought)思维链是一种让AI像人类一样“思考”的技术,帮助AI在处理复杂问题时能够按步骤思考。对于复杂的推理类问题,先思考后执行,效果往往更好。而且还可以让模型在生成答案时展示推理过程,便于我们理解和优化AI。CoT的实现方式其实很简单,可以在输入Prompt时,给模型提供额外的提示或引导,比如“让我们一步一步思考这个问题”,让模型以逐步推理
- Spring Boot + 本地部署大模型实现:安全性与可靠性保障
代码老y
springbootbootstrap后端
在将大语言模型集成到SpringBoot应用中时,安全性和可靠性是两个关键因素。本地部署的大模型虽然提供了强大的功能,但也可能带来一些安全风险,如数据泄露、模型被恶意利用等。本文将介绍如何在SpringBoot应用中保障本地部署大模型的安全性和可靠性,确保应用的稳定运行。一、安全性保障(一)数据加密传输加密:确保模型生成的结果在传输过程中被加密,防止数据在传输过程中被窃取。可以使用HTTPS协议来
- Web-API-day1 DOM 文档对象模型
码哥DFS
前端javascript
获取DOM对象1.querySelector(")满足条件第一个元素2.querySelectorAll(")满足条件的元素集合返回伪数组3.了解其他方式1)getElementById2)getElementByTagname操作元素内容修改DOM文本内容1)innerText将文本内容添加/更细到任意标签位置,文本包含的标签不会被解析2)innerHTML将文本内容添加/更细到任意标签位置,文
- 【项目日记(一)】-仿mudou库one thread oneloop式并发服务器实现
@Aurora.
服务器运维
1、模型框架客户端处理思想:事件驱动模式事件驱动处理模式:谁触发了我就去处理谁。(如何知道触发了)技术支撑点:I/O的多路复用(多路转接技术)1、单Reactor单线程:在单个线程中进行事件驱动并处理对所有客户端进行IO事件监控、哪个客户端触发了事件,就去处理谁处理:接收它的请求,进行业务处理,进行响应。优点:单线程操作,操作都是串行化的,思想简单,(不需要考虑进程或者线程间的通信问题,以及安全问
- 想要了解大模型,看懂这一篇就够了!大模型工作流程及核心参数介绍!
Gq.xxu
qwen3vllmtransforms大语言模型部署深度学习人工智能
若想深入探究大模型核心参数的效果与作用,就务必先弄清大模型的工作流程,明确核心参数在流程各阶段的效能与功能,知晓其具体含义。一,大模型的工作流程大模型运行时的工作原理可以概括为输入处理→特征提取→模型推理→结果生成四个核心阶段,整个过程融合了深度学习架构、自然语言处理技术以及分布式计算能力。从用户输入到大模型输出,整个工作的处理流程如下:输入文本→分词→嵌入+位置编码→Transformer多层处
- 「源力觉醒 创作者计划」_以FastDeploy为例部署ERNIE-4.5-21B大模型全流程实践
cooldream2009
大模型基础AI技术文心大模型FastDeploy
目录前言1环境准备与依赖安装1.1硬件要求1.2Python环境与pip升级2下载ERNIE-4.5模型权重2.1安装HuggingFaceCLI工具2.2设置国内镜像加速(可选)2.3下载模型文件3安装FastDeploy与Paddle推理引擎3.1安装PaddlePaddle-GPU版本3.2安装FastDeploy-GPU4启动ERNIE-4.5本地服务4.1启动OpenAI兼容API服务4
- 深入理解Tomcat 基本架构
水木石画室
tomcat架构java
Tomcat是Apache软件基金会旗下的开源Servlet容器,实现了JavaEE(现JakartaEE)的Servlet、JSP等规范,广泛用于JavaWeb应用的部署和运行。其架构设计围绕高效处理HTTP请求、灵活管理Web应用和支持扩展展开。以下从核心组件、层级结构、关键机制三个维度深入解析Tomcat的基本架构。一、Tomcat核心组件与层级结构Tomcat的架构采用分层容器模型,核心组
- 深度学习-Tensor
Tensor张量:与numpy中的ndarray不同之处:tensor可以在GPU或其他专用硬件上运行,以加速计算。一、Tensor初始化1.直接从数据中创建data=[[1,2],[3,4]]x_data=torch.tensor(data)2.从numpy数组创建np_array=np.array(data)x_np=torch.from_numpy(np_array)3.从另一个Tensor
- AI初学者如何对大模型进行微调?——零基础保姆级实战指南
仅需8GB显存,三步完成个人专属大模型训练四步实战:从环境配置到模型发布步骤1:云端环境搭建(10分钟)推荐使用阿里魔塔ModelScope免费GPU资源:#注册后执行环境初始化pip3install--upgradepippip3installbitsandbytes>=0.39.0gitclone--depth1https://github.com/hiyouga/LLaMA-Factory.
- 《沟通力》:沟通力到底藏着多少不为人知的秘密?
只因在人海中多看了你一眼
个人成长学习
创作背景本文旨在通过多种沟通模型提升个人和团队的沟通能力。《沟通力》强调通过不同的沟通模型,提升沟通的效果和效率。阅读动机提升沟通能力:通过学习不同的沟通模型,提高日常交流的效果。优化工作表现:在职场中更好地表达自己,提高团队协作效率。增强人际关系:改善与家人、朋友的关系,建立更和谐的人际环境。核心概念与方法论1.沟通漏斗效应核心概念:沟通过程中,信息从发送者到接收者会逐渐减少,导致信息失真。方法
- 从0开始学习计算机视觉--Day08--卷积神经网络
之前我们提到,神经网络是通过全连接层对输入做降维处理,将输入的向量通过矩阵和激活函数进行降维,在神经元上输出激活值。而卷积神经网络中,用卷积层代替了全连接层。不同的是,这里的输入不再需要降维,而是可以保留输入的空间结构,例如输入的是32×32×3的图片,在全连接层中是3072×1的向量,而卷积层里则保持不变。这里的改变的地方是对于同样的WX的函数形式,这里是把5×5×3的权重矩阵(也叫卷积核)向量
- 扣子智能体5:使用Python异步执行工作流并获取执行结果
呆萌的代Ma
大模型python扣子
使用python异步执行工作流的步骤有3步:异步执行工作流,获取工作流的execute_id,之后就能根据这个id查询工作流的执行情况如果execute_id=“Success”,就表示工作流执行完毕执行完毕后,打印output,就是大模型最后的全部示例代码fromloguruimportloggerimportrequestsimportjsondefrun_coze_ai(coze_api_t
- MCP客户端请求MCP服务器资源的Python SDK实现
AI天才研究院
计算AI人工智能与大数据Python实战python开发语言ai服务器
我将为您提供一个详细的指南,说明如何使用PythonSDK让MCP客户端请求MCP服务器的资源。MCP客户端请求MCP服务器资源的PythonSDK实现核心概念ModelContextProtocol(MCP)是一个标准化协议,允许应用程序以标准化的方式为大语言模型(LLM)提供上下文,将提供上下文的关注点与实际的LLM交互分离。MCP中的资源(Resources)是一种核心原语,允许服务器暴露数
- 基于存算一体架构的实时深度学习推理优化
瑕疵
热点资讯架构深度学习人工智能
博客主页:瑕疵的CSDN主页Gitee主页:瑕疵的gitee主页⏩文章专栏:《热点资讯》基于存算一体架构的实时深度学习推理优化基于存算一体架构的实时深度学习推理优化基于存算一体架构的实时深度学习推理优化引言存算一体架构的核心优势1.能效比突破2.实时性保障架构设计与实现技术1.存储单元创新2.硬件加速器设计3.电路级优化深度学习推理优化策略1.模型压缩技术2.硬件-软件协同优化3.运行时调度典型应
- ChatTTS实现文本转语音(TTS)全流程教程【附完整代码 & 环境配置】
文浩(楠搏万)
语言模型Chattts大语言模型AI人工智能python生成
言简意赅的讲解ChatTTS解决的痛点本教程手把手带你从零上手ChatTTS,实现文本到语音(TTS)转换,适合自媒体配音、有声内容创作、AI语音实验等场景。配套提供完整代码和环境配置方法,一键复现,无压力!什么是ChatTTS?ChatTTS是由清华大学团队开源的一款中文文本转语音(Text-to-Speech,TTS)模型。它的特点包括:️语音自然流畅,情感丰富️支持自定义发音人音色(spe
- 人工智能LLM | 基础配置 | 通过环境变量配置API-KEY 一文通教程
H-大叔
人工智能大模型实战与教程人工智能
在实战开发大语言模型的过程中,经常会遇到各种API-KEY的配置问题,例如GPTOpenAIKEY的配置,而且目前大部分都要求将其配置在环境变量中,下面将会讲解如何在Linux、macOS、Windows中配置,本文一文通教程。您可以使用配置环境变量的方法,避免在调用各种SDK时显式地配置API-KEY,从而降低泄漏风险。环境变量是操作系统中用于存储有关系统环境的信息的变量。您可以通过环境变量来配
- 大模型API密钥的环境变量配置(大模型API KEY管理)(将密钥存储在环境变量)(python-dotenv)(密钥管理)环境变量设置环境变量
Dontla
大模型LLMpython开发语言
文章目录大模型API密钥的环境变量配置:安全与最佳实践引言安全风险代码泄露风险版本控制暴露环境变量的优势安全隔离跨环境一致性环境变量配置方法Linux/macOS配置Windows配置开发框架集成Node.js使用dotenvPython使用python-dotenv最佳实践.env文件管理环境变量模板容器环境配置安全增强措施密钥轮换机制秘密管理服务集成总结大模型API密钥的环境变量配置:安全与最
- 基于odoo17的设计模式详解---适配模式
花好月圆春祺夏安
设计模式
大家好,我是你的Odoo技术伙伴。在一个现代化的企业信息系统中,Odoo往往不是一座孤岛。它需要与各种各样的外部系统进行数据交换:可能是老旧的ERP系统、第三方的物流API、不同格式的支付网关,或者是需要导入的CSV/Excel文件。这些外部系统的数据格式和接口,几乎不可能与Odoo原生的模型和API完全兼容。这时,我们就需要一个“翻译官”或“转换插头”来连接这两个不同的世界。这个角色,正是由我们
- AI智能体长期记忆系统架构设计与落地实践:从理论到生产部署
一休哥助手
人工智能人工智能
摘要长期记忆能力是AI智能体实现持续个性化服务的核心瓶颈。本文基于Mem0、MemoryOS等前沿研究,系统解析长期记忆系统的三级架构、六大原子操作与生产级优化方案,结合金融、医疗等场景案例,通过7张架构图与4张对比表格,揭示如何实现91%延迟降低与90%成本节约的企业级记忆系统。全文超6000字,提供可落地的架构范式。1长期记忆:AI智能体的认知基石1.1人类记忆与AI记忆的类比情景记忆语义记忆
- 【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
G皮T
#大语言模型人工智能LLM大语言模型chatgptdeepseekDeepSeek-R1DeepSeek-V3
ChatGPT、DeepSeek-R1、DeepSeek-V3辨析1.ChatGPT对比DeepSeek1.1技术相似点1.2主要差异1.3关键区别1.4如何选择1.5总结2.DeepSeek-R1对比DeepSeek-V32.1DeepSeek-R12.2DeepSeek-V32.3核心区别总结2.4如何选择3.R1和V3有什么含义3.1DeepSeekR1的"R"3.2DeepSeekV3的"
- 「论文导读」LLM高效推理与模型量化
雷羿 LexChien
prompt人工智能LLM论文阅读
1.论文背景作者:HugoTouvron等人,來自MetaAI来源:arXiv:2302.13971,2023年2月主题:介绍LLaMA系列模型(LLaMA-7B、13B、33B、65B),专为研究用途设计,强调高效能与低资源需求的语言模型推理。论文探讨如何通过优化训练数据、模型架构和推理技术,在有限硬体资源(如单一GPU或CPU)上实现高效推理。学术背景:随着大型语言模型(LLM)如GPT-3的
- 零基础上手鸿蒙开发:用ArkTS打造你的第一个HarmonyOS应用
harmonyos
摘要随着HarmonyOS的不断发展,越来越多开发者开始关注这套以分布式能力为核心的国产操作系统。不同于传统Android开发,HarmonyOS引入了更现代的Stage模型以及更高效的声明式UI语言——ArkTS,让应用开发更灵活、更统一。本文将带你从零开始构建一个完整的鸿蒙应用,从环境配置、页面开发到交互实现,逐步掌握入门技能。引言:鸿蒙开发为啥值得学?从2019年首次发布到现在,Harmon
- 在学校研究学习的偏算法,秋招投递开发岗位还有希望吗
程序员
前言Thelasttime,Ihavelearned这是星球同学,在周五晚上答疑聊天的时候对我的提问:如果简历上的项目偏算法,但是自学了一些操作系统和计网的知识,秋招的时候投递偏开发的岗位有希望吗?简历上是否也要加上相关项目?估计也是很多朋友的疑问,毕竟很多同学读研,有些老师疯狂push,要成果,发论文。要想尽快发论文,那只能“研究”人工智能、算法的一些东西了。但是众所周知,算法要求很高,不仅要求
- AlphaEvolve:谷歌的算法进化引擎 | 从数学证明到芯片设计的AI自主发现新纪元
大千AI助手
人工智能Python#OTHER算法人工智能深度学习AlphaEvolvegooglegemini
AlphaEvolve:谷歌的算法进化引擎|从数学证明到芯片设计的AI自主发现新纪元——结合大语言模型与进化计算,重塑科学发现与工程优化的通用智能体本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!⚙️一、核心定义与技术架构AlphaEvolve是由谷歌DeepMind开发的通用科学AI智能体,其核心
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p