目录
一、ThreadPool 线程池
1、参数说明
2、拒绝策略
3、线程池种类
(1)newCachedThreadPool(常用)
(2)newFixedThreadPool(常用)
(3)newSingleThreadExecutor(常用)
(4)newScheduleThreadPool(了解)
(5)newWorkStealingPool
4、线程池入门案例
5、注意事项
二、Fork/Join
1、框架简介
2、案例
可看这篇文章
创建:
/**
* 可缓存线程池
*
* @return
*/
public static ExecutorService newCachedThreadPool() {
/**
* corePoolSize 线程池的核心线程数
* maximumPoolSize 能容纳的最大线程数
* keepAliveTime 空闲线程存活时间
* unit 存活的时间单位
* workQueue 存放提交但未执行任务的队列
* threadFactory 创建线程的工厂类:可以省略
* handler 等待队列满后的拒绝策略:可以省略
*/
return new ThreadPoolExecutor(0,
Integer.MAX_VALUE,
60L,
TimeUnit.SECONDS,
new SynchronousQueue<>(),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
}
/**
* 固定长度线程池
* @return
*/
public static ExecutorService newFixedThreadPool(){
/**
* corePoolSize 线程池的核心线程数
* maximumPoolSize 能容纳的最大线程数
* keepAliveTime 空闲线程存活时间
* unit 存活的时间单位
* workQueue 存放提交但未执行任务的队列
* threadFactory 创建线程的工厂类:可以省略
* handler 等待队列满后的拒绝策略:可以省略
*/
return new ThreadPoolExecutor(10,
10,
0L,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
}
/**
* 单一线程池
* @return
*/
public static ExecutorService newSingleThreadExecutor(){
/**
* corePoolSize 线程池的核心线程数
* maximumPoolSize 能容纳的最大线程数
* keepAliveTime 空闲线程存活时间
* unit 存活的时间单位
* workQueue 存放提交但未执行任务的队列
* threadFactory 创建线程的工厂类:可以省略
* handler 等待队列满后的拒绝策略:可以省略
*/
return new ThreadPoolExecutor(1,
1,
0L,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
}
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize,
ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize,
threadFactory);
}
场景: 适用于需要多个后台线程执行周期任务的场景
public static ExecutorService newWorkStealingPool(int parallelism) {
/**
* parallelism:并行级别,通常默认为 JVM 可用的处理器个数
* factory:用于创建 ForkJoinPool 中使用的线程。
* handler:用于处理工作线程未处理的异常,默认为 null
* asyncMode:用于控制 WorkQueue 的工作模式:队列---反队列
*/
return new ForkJoinPool(parallelism,
ForkJoinPool.defaultForkJoinWorkerThreadFactory,
null,
true);
}
场景: 火车站 3 个售票口, 10 个用户买票
/**
* 入门案例
*/
public class ThreadPoolDemo1 {
/**
* 火车站 3 个售票口, 10 个用户买票
*
* @param args
*/
public static void main(String[] args) {
//定时线程次:线程数量为 3---窗口数为 3
ExecutorService threadService = new ThreadPoolExecutor(3,
3,
60L,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy());
try {
//10 个人买票
for (int i = 1; i <= 10; i++) {
threadService.execute(() -> {
try {
System.out.println(Thread.currentThread().getName() + " 窗口, 开始卖票");
Thread.sleep(5000);
System.out.println(Thread.currentThread().getName() + " 窗口买票结束");
} catch (Exception e) {
e.printStackTrace();
}
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
//完成后结束
threadService.shutdown();
}
}
}
Fork:把一个复杂任务进行分拆,大事化小Join:把分拆任务的结果进行合并
class MyTask extends RecursiveTask {
//拆分差值不能超过10,计算10以内运算
private static final Integer VALUE = 10;
private int begin ;//拆分开始值
private int end;//拆分结束值
private int result ; //返回结果
//创建有参数构造
public MyTask(int begin,int end) {
this.begin = begin;
this.end = end;
}
//拆分和合并过程
@Override
protected Integer compute() {
//判断相加两个数值是否大于10
if((end-begin)<=VALUE) {
//相加操作
for (int i = begin; i <=end; i++) {
result = result+i;
}
} else {//进一步拆分
//获取中间值
int middle = (begin+end)/2;
//拆分左边
MyTask task01 = new MyTask(begin,middle);
//拆分右边
MyTask task02 = new MyTask(middle+1,end);
//调用方法拆分
task01.fork();
task02.fork();
//合并结果
result = task01.join()+task02.join();
}
return result;
}
}
public class ForkJoinDemo {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//创建MyTask对象
MyTask myTask = new MyTask(0,100);
//创建分支合并池对象
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask forkJoinTask = forkJoinPool.submit(myTask);
//获取最终合并之后结果
Integer result = forkJoinTask.get();
System.out.println(result);
//关闭池对象
forkJoinPool.shutdown();
}
}